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Abstract— Optimum design of complex truss 
structures often requires searching a high-
dimensional, heavily constrained solution space. For 
the very same reason, the problem has been 
established as a standard benchmark for evaluating 
the effectiveness of multivariate optimization 
algorithms. Moreover, the popularity of such 
structures justifies the development, or at least 
custom-tuning, of numerical search algorithms 
tailored to determine the optimum topology/ 
dimensions of large truss structures at minimum 
computational cost. 
We present a new hybrid algorithm for the weight 
minimization of large truss structures. The algorithm 
combines the fundamental elements of standard 
Genetic Algorithms with those proposed by Nelder 
and Mead in their Simplex algorithm. This would 
result in a search tool that inherits the power of GAs 
to quickly spot the promising regions of the search 
space and the ability of Simplex to effortlessly 
approach the optimum in convex subspaces. 
Furthermore, we improve the performance of the 
algorithm by incorporating a modified Tournament 
Selection and augment the resulting algorithm with a 
dynamic penalty method to continuously confine the 
search to the borders of the feasible region. 
To demonstrate the applicability and effectiveness of 
the proposed algorithm, we apply it to a variety of 
structural design problems and the results are 
compared with those reported in literature. 
 
Keywords—Multivariate Optimization, Hybrid 
Simplex-Genetic Algorithm, Truss Structures 
 
 

I. INTRODUCTION 

Optimal design of structures dates back to the times 
of such great scientists as Galileo, Bernoulli, 
Lagrange, and Navier who studied basic methods 
to find the “best” shapes for structural elements to 
stand given loads while satisfying certain strength 
requirements [1, 2]. Since then, the topic has grown 
to become a challenging one, generally known as 
Structural Optimization, which seeks to determine 
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the structure’s topology/dimensions/materials that 
would render the structure as light/inexpensive as 
possible while keeping its performance 
characteristics (e.g. stresses and displacements) 
within allowable limits. 
The large number of design variable and their 
mixed (discrete/continuous) nature has rendered the 
problem a perfect benchmark for large scale search 
algorithms. The emergence of Evolutionary 
Algorithms, with their ability to simultaneously 
examine numerous areas of vast, multimodal search 
spaces resulted in more reliable, noticeably less 
expensive designs. 
One of the most promising and popular 
evolutionary algorithms is Genetic Algorithms 
(GAs) which was inspired by the Darwinian 
principle of Survival of the Fittest. Using a number 
of nature-like genetic operators and multiple 
stochastic decision parameters, GAs basically make 
a population of artificial “chromosomes” (each 
representing a potential solution) to “evolve” 
toward global/near global solution(s).    
The Simplex algorithm, basically an unconstrained 
numerical optimization algorithm, on the other 
hand builds on the presumption that moving the 
worst member of a set of randomly selected points 
towards the centroid of the other members and 
beyond that would improve the point and 
continuing in this way would lead the centroid of 
the set to the optimum provided that the search 
region is convex.    
The idea of applying GAs to the optimal design of 
structures was first implemented by Goldberg and 
Samtani [3]. They considered the use of GAs to 
optimize a 10-bar planar truss. Other researchers 
have also applied the technique to the design of 
plane frames [5], welded beams [4]. Pham and 
Yang [6] presented interesting work on the 
optimization of multi-modal discrete functions with 
GAs and used truss structures as an example. 
GÄatzi[7] combined GAs and Ansys™ and applied 
the combination to some structural design 
problems. 
 

II. THE BASIC GENETIC ALGORITHMS 

Before describing our improved version, we need 
to briefly introduce the basic elements of standard 
GAs. 
 

 Binary Coded Genetic Algorithms 

In a binary coded GA each chromosome presents a 
possible solution for the problem, operators act on 
binary coded solutions as what happens in nature. 
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Each member in a binary coded GA is a bit string. 
This bit string called chromosome, presents an 
available solution for the problem. Genetic 
operators are applied on these strings as what 
happens in nature. For simple GA crossover and 
mutation are basic operators. 
Here are some of its fundamental operators: 
 

 Crossover 
Crossover is the most important operator in GA. In 
crossover the couples chosen from mating pool are 
merged with each other to make children who get 
their features from their parents but not a new one. 
A very simple single point cross over scheme is as 
in figure [1]. 
 

 Mutation 
Another main operator in GA is mutation. Upon its 
low probability to happen mutation enables us to 
find new search areas. In a binary coded GA, 
mutation if happens changes a bit of a gen from 0 
to 1 or vice versa. 
 

Parent 1 10110  010 
Parent 2 10101  111 

 

Child 1 10110  111 
Child 2 10101  010 

Figure 1- Crossover Operator 

 
Parent  10110101 
Child 11110001 

Figure 2- Mutation Operator 

 
 Shifting Constrained Problem to Unconstrained  

A constrained problem is one in which the feasible 
region is defined by a set of implicit/explicit 
constraints is limited to some boundaries. It means 
that the validity of a solution is confined to its 
constraints defined for the problem. As an example 
to optimize weight of a truss we are searching for 
the lowest cross section of members and the 
constraints are stress and displacement of members. 
Here stress and displacement are indirect 
constraints as they are not applied directly on the 
cross section of the members i.e. the variables of 
the fitness function. 
To shift the problem to a normal form we easily 
applied penalty to the solution which violates the 
constraints, so automatically the fitness of these 
chromosomes are lowered. 
Many penalty methods are introduced and 
suggested for different problems. Here we have 
applied dynamic penalty as follow: 
Obj. Function: fሺxሬԦሻ 
Constrained to: g୧ሺxሬԦሻ ൑ 0 ,   i ൌ 1, q 
FሺxሬԦሻ ൌ fሺxሬԦሻ േ pሺxሬԦሻ 

pሺxሬԦሻ ൌ αሺ# iterationሻβ ൈ෍S୧ሺxሬԦሻ
୯

୧ୀଵ

.ݍܧ          ሺ1ሻ 

S୧ሺxሬԦሻ ൌ ൜ 0         g୧ሺxሬԦሻ ൑ 0
|g୧ሺxሬԦሻ|    otherwise    

 

 
The sensitivity of the problem to this penalty 
method and its parameters are discussed further. 
Dynamic penalty enables us to have a smooth rate 
of reaching to the global optimum. A wise tuning 
of the penalty parameters will tend the algorithm 
find the global optimum and preferably searches 
areas near to the boundaries of constraints where 
the validity of the solution is acceptable and the 
global point also lives there. 
 

 Tournament Selection 
 A variety of methods has been introduced for 
reproduction in GA. Goldberg introduced the 
application of roulette wheel as the most famous 
tool for this operator. A very easy and more 
efficient way to choose parents is to randomly 
choose 2 chromosomes and comparing their fitness. 
The chromosome with better fitness will be the 
candidate for being a parent. This method is called 
Tournament Selection. 
 

III. THE HYBRID SIMPLEX-GENETIC ALGORITHM 

As mentioned earlier, the main idea behind the 
Simplex algorithm is to scroll a given area to find 
the best point. Since the problem has changed to an 
unconstrained one, we can use the Simplex method 
to find better sub population. 
In a Simplex algorithm with ݊ variabes ݊ ൅ 1 
points are given to search the area. So to have 
better chromosome in a modified GA we first 
chose a best bunch of chromosomes, the number of 
them was dependant on the case. For example for a 
problem with 8 variables we should choose 9 
chromosomes. Then by running the Simplex 
algorithm among these points at least a local 
optimum is achieved. Not being constrained to use 
only a set of points, we applied Simplex to more set 
of groups to upper the chance of finding the best 
points. To control this combination of algorithms, a 
parameter called Simplex Covering (SC) were 
defined to experimentally find the best number of 
groups to get into the Simplex algorithm. 
Comparison of the results shows an efficient 
convergence time, even when the SC is high. This 
is because what happens behind the Simplex is so 
simple but effective that does not affect the solving 
time but increases the chance to find the global 
optimum. This hybrid method is called Hybrid 
Simplex-Genetic Algorithm (HSGA). 
 

IV. NUMERICAL EXAMPLES 

Standard test problems that have been studied in 
related literature are presented here to demonstrate 
the efficiency of the HSGA. These cases include a 
10-bar planar and a 25-bar space truss, subjected to 
a single load condition and a 72-bar space truss 
subjected to two load conditions. These truss 
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structures were analyzed using the FEM 
displacement method. For all these cases the 
HSGA general solving parameters were as in table 
[1]. Table [2] presents the general parameters of the 
problems, the first one is a 2D truss the others are 
3D. 
 

Table 1-General Parameters of HSGA 
Algorithm 
Parameters 10-bar 25-bar 72-bar 

Population Size 200 100 300 

CrossOver Rate 0.75 0.85 1 
Mutation 

Probability 0.005 0.005 0.005 

Simplex 
Covering(SC) 5 3 10 

Penalty(α-β) Eq.1 100-2 10-1 50-1 
 

Table 2- Parameters of Structure Problems 
Problem’s  
Parameters 

10-bar 
(2D) 

25-bar 
(3D) 

72-bar 
(3D) 

Material 
Densityሺ௟௕௙

௜௡య
ሻ 0.1 0.1 0.1 

Modulus of 
Elasticity(݇݅ݏ) 10,000 10,000 10,000 

Stress 
Limitationሺ݇݅ݏሻ ±25 ±40 ±25 

Displacement 
Limitationሺ݅݊ሻ ±2.0 ±0.35 ±0.25 

Number of 
Variables 10 8 16 

Number of 
Constraints 22 55 264 

 

A. 10-BAR PLANAR TRUSS 

The cantilever truss, shown in Fig[3], was 
previously analyzed using various mathematical 
methods by Schmit and Farshi [8], Schmit and 
Miura [9], Venkayya [10], Gellatly and Berke [11], 
Dobbs and Nelson [12], Rizzi [13], Khan and 
Willmert [14], John et al. [15], Sunar and 
Belegundu [16], Stander [17], Xu and Grandhi 
[18],and Lamberti and Pappalettere [19,20] Kang 
Seok Lee, Zong Woo Geem [21]. 
In this example, ଵܲ and ଶܲ were 150 and 50 lbs 
respectively, see Fig [3] for geometry of the forces. 
Table [6] give the best solution vector for this case, 
and also show a comparison between the optimal 
design results reported in the literature and the 
present work. 
The best solutions were approached by only 2 
minutes on a regular computer. As it is shown in 
Fig [4] these results were given in only 400 
hundred iterations which show high efficiency of 
the HSGA. 

 
Figure 3- 10 bar planar truss 

 

 
Figure 4 -Convergence History for Two Different Penalty Parameters 

B. 25-BAR SPACE TRUSS 

The second example considers the weight 
minimization of a 25-bar transmission tower as 
shown on Fig [5]. The design variables are the 
cross-sectional area for the truss members, which 
are linked in eight member groups as shown in 
Table [4]. Loading of the structure is presented on 
Table [3]. 
 

Table 3- Loading of the 25-bar Space Truss 
Node ܨ௫ሺkips. ሻ ܨ௫ሺkips. ሻ ܨ௫ሺkips. ሻ 

1 1 -10 -10 
2 0 -10 -10 
3 0.5 0 0 
6 0.6 0 0 

 

Fig [6] shows how the algorithm converges to the 
best answer. The effects of penalty parameters are 
also shown in the figure. 
 

Table 4-Group cross Section of 25-bar Space Truss 

 
These results were captured with 200 to 300 
hundred of iterations as it’s obvious from the figure 
that the fitness function doesn’t change after this 
number of iteration. We can see other’s work on the 
internet with a better fitness function but 
unfortunately most of them handle values which 
violate the constraints. 

Group 
Number Members of Truss 

1 1-2 
2 1-4,2-3,1-5,2-6 
3 2-5,2-4,1-3,1-6 
4 3-6, 4-5 
5 3-4, 5-6 
6 3-10, 6-7,4-9, 5-8 
7 3-8, 4-7,6-9,5-10 
8 3-7,4-8,5-9,6-10 
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Figure 5- 25-bar Space Truss 

 

  

Figure 6- Convergence History for two Different Penalty Parameters 

 
C. 72- BAR SPACE TRUSS 

The 72-bar space truss, shown in Fig [7], has also 
been optimized by many researchers, including 
Schmit and Farshi [22], Schmit and Miura [23], 
Venkayya [24], Gellatly and Berke [25], Kang 
Seok Lee, Zong Woo Geem [21]. 
This space truss was subjected to the following two 
loading conditions: 
 

Table 5- Loading Condition of 72-bar Space Truss 
 Nodes ܨ௫ሺkips. ሻ ܨ௫ሺkips. ሻ ܨ௫ሺkips. ሻ

 
Condition 

1 

1 5 5 -5 

2 0 0 0 

3 0 0 0 

 
Condition 

2 

1 0 0 -5 
2 0 0 -5 
3 0 0 -5 
4 0 0 -5 

 
The minimum cross-sectional area of 0.01 ݅݊ଶ was 
considered in the solution. 
Table [9] shows the cross section grouping of the 
members. 
 

 
 

Figure 7- 72-bar Space Truss 

For this case the best answer and the comparison of 
the results are available in table [8] .As you can see 
in Fig [8] the robustness of HSMA is obvious and 
such results achieved only by 500 iterations which 
took 3 minutes on a regular computer. 

 
Figure 8- Convergence History for two different Penalty Parameters 

V. SUMMARY AND CONCLUSIONS 

A new hybrid search/optimization algorithm, called 
Hybrid Simplex-Genetic Algorithms (HSGA) was 
presented. The algorithm combines the exploration 
power of standard GAs and the exploitation 
capacity of the Nelder-Mead (Simplex) algorithm. 
The resulting algorithm has shown to benefit from 
the power of GAs to quickly spot the promising 
regions of the search space and the ability of 
Simplex to efficiently approach the optimum in 
convex subspaces. The performance of the 
algorithm was further improved by incorporating a 
modified Tournament Selection and augmenting it 
with a dynamic penalty method to continuously 
confine the search to the borders of the feasible 
region(s.) 
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Table 6-Comparison of optimal design for 10-bar space truss 

Variables
ሺ࢔࢏૛ሻ 

Schmit 
& 

Farshi 

Schmit 
& 

Miura 
Venkayy 

Dobbs 
& 

Nelson 
Rizzi 

Khan 
& 

Willmert 
Johnetal HSGA 

(Thiswork) 

1 Aଵ 24.29 23.55 25.19 25.81 23.53 24.72 23.59 24.8210 
2 Aଶ 0.100 0.100 0.363 0.100 0.100 0.100 0.10 0.0100 
3 Aଷ 23.35 25.29 25.42 27.23 25.29 26.54 25.25 24.7847 
4 Aସ 13.66 14.36 14.33 16.65 14.37 13.22 14.37 12.9048 
5 Aହ 0.100 0.100 0.417 0.100 0.100 0.108 0.10 0.0422 
6 A଺ 1.969 1.970 3.144 2.024 1.970 04.835 1.97 2.0719 
7 A଻ 12.67 12.39 12.08 12.78 12.39 12.66 12.39 13.4122 
8 A଼ 12.54 12.81 14.61 14.22 12.83 13.78 12.80 13.9488 
9 Aଽ 21.97 20.34 20.26 22.14 20.33 18.44 20.37 18.5669 

10 Aଵ଴ 0.100 0.100 0.513 0.100 0.100 0.100 0.10 0.0100 

Weight(lb) 4691.84 4676.96 4684.11 4895.6 5059.7 4676.92 4676.93 4665.6 

 

Table 7-Comparison of optimal design for 25-bar space truss 

Variables 
ሺ࢔࢏૛ሻ Zhu Rizz Schmit Rajeev Tulleo(GA) HSGA 

(This work) 

 ଵܣ 1 0.1 0.01 0.01 0.1 0.1 0.01 
 ଶܣ 2 1.9 1.988 1.964 1.8 0.7 0.0635 
 ଷܣ 3 2.6 2.991 3.033 2.3 3.2 3.6641 
 ସܣ 4 0.1 0.01 0.01 0.2 0.1 0.01 
 ହܣ 5 0.1 0.01 0.01 0.1 1.4 1.9614 
 ଺ܣ 6 0.8 0.684 0.67 0.8 1.1 0.7430 
 ଻ܣ 7 2.1 1.676 1.68 1.8 0.5 0.1650 
 ଼ܣ 8 2.6 2.662 2.67 3 3.4 3.9297 

Weight(lb) 562.93 545.16 545.22 546.01 493.94 464.872 

 

Table 8- Comparison of optimal design for 72-bar space truss 

Variables 
ሺ࢔࢏૛ሻ 

Adeli 
& 

Park 

Sarma & Adeli Lee 
& 

Geem 

HSGA 
(This work) Simple GA Fuzzy GA 

1 Aଵ ൎ Aସ 2.755 2.141 1.732 1.963 1.8226 
2 Aହ ൎ Aଵଶ 0.510 0.510 0.522 0.481 0.5409 
3 Aଵଷ ൎ Aଵ଺ 0.010 0.054 0.010 0.010 0.0105 
4 Aଵ଻ ൎ Aଵ଼ 0.010 0.010 0.013 0.011 0.0117 
5 Aଵଽ ൎ Aଶଶ 1.370 1.489 1.345 1.233 1.1040 
6 Aଶଷ ൎ Aଷ଴ 0.507 0.551 0.551 0.506 0.5119 
7 Aଷଵ ൎ Aଷସ 0.010 0.057 0.010 0.011 0.0129 
8 Aଷହ ൎ Aଷ଺ 0.010 0.013 0.013 0.012 0.0110 
9 Aଷ଻ ൎ Aସ଴ 0.481 0.565 0.492 0.538 0.5608 

10 Aସଵ ൎ Aସ଼ 0.508 0.527 0.545 0.533 0.5437 
11 Aସଽ ൎ Aହଶ 0.010 0.010 0.066 0.010 0.0120 
12 Aହଷ ൎ Aହସ 0.643 0.066 0.013 0.167 0.1574 
13 Aହହ ൎ Aହ଼ 0.215 0.174 0.178 0.161 0.1644 
14 Aହଽ ൎ A଺଺ 0.518 0.425 0.524 0.542 0.5560 
15 A଺଻ ൎ A଻଴ 0.419 0.437 0.396 0.478 0.4012 
16 A଻ଵ ൎ A଻ଶ 0.504 0.641 0.595 0.551 0.5196 

Weight(lb) 376.3 372.4 364.7 364.33 363.3821 
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Table 9-Cross Section Grouping of 72-Bar Truss 

 
Through a number of standard structural design 
examples of various complexities, the proposed 
algorithm was demonstrated to outperform the 
standard GA and some hybrid methods reported in 
literature. 
The proposed algorithm can be applied to a wide 
range of engineering problems with large, highly 
nonlinear and heavily constrained solution spaces 
and mixed (discrete-continuous) variables. 
 

REFERENCES 

[1] Galileo Galilei. Dialogues Concerning Two 
New Sciences. Evanston Ill. Northwestern 
University Press, 1950. Originally published 
in 1665. 

[2] Using Genetic Algorithms for Optimal 
Design of Trusses. Carlos A. Coello Coello 
Michael Rudnick Alan D. Christiansen. 
Department of Computer Science, Tulane 
University, New Orleans, LA 70118.W. M. 
Jenkins.  

[3] Towards structural optimization via the 
genetic algorithm. Computers and 
Structures, 40(5):1321-7, 1991 

[4] Kalyanmoy Deb. Optimal design of a 
welded beam via genetic algorithms. AIAA 
Journal, 29:2013-15, November 1991. 

[5] W. M. Jenkins. Plane frame optimum design 
environment based on genetic algorithm. 
Journal of Structural Engineering, 
118(11):3103-13, November 1992 

[6] D. T. Pham and Y. Yang. Optimization of 
multimodal discrete functions using genetic 
algorithms. In Institute of Mechanical 
Engineers (Part D), pages 53- 9, 1993 

[7] Roman GÄatzi, Marion Uebersax, Oliver 
KÄonig. Structural Optimization Tool using 
Genetic Algorithms and Ansys, June 2000 

[8] Schmit Jr LA, Farshi B. Some 
approximation concepts for Structural 
synthesis. AIAA J 1974; 12 (5):692–9. 

[9] Schmit Jr LA, Miura H. Approximation 
concepts for efficient structural synthesis. 

NASA CR-2552, Washington, DC: NASA; 
1976. 

[10] Venkayya VB. Design of optimum 
structures. Comput and Structures 1971;1(1–
2):265–309. 

[11] Gellatly RA, Berke L. Optimal structural 
design. AFFDLTR- 70-165, Air Force Flight 
Dynamics Lab, Wright-Patterson AFB, OH; 
1971. 

[12]  Dobbs MW, Nelson RB. Application of 
optimality criteria to automated structural 
design. AIAA J 1976;14(10):1436–43. 

[13] Rizzi P. Optimization of multiconstrained 
structures based on optimality criteria. SAE 
17th Structures, Structural Dynamics, and 
Materials Conference, King of Prussia, PA; 
1976. 

[14] Khan MR, Willmert KD, Thornton WA. An 
optimality criterion method for large-scale 
structures. AIAA J 1979; 17(7):753–61. 

[15] John KV, Ramakrishnan CV, Sharma KG. 
Minimum weight design of truss using 
improved move limit method of sequential 
linear programming. Computer and 
Structures 1987;27(5):583–91. 

[16] Sunar M, Belegundu AD. Trust region 
methods for structural optimization using 
exact second order sensitivity. Int J Numer 
Methods Eng 1991; 32:275–93. 

[17] Stander N, Snyman JA, Coster JE. On the 
robustness and efficiency of the S.A.M. 
algorithm for structural optimization. Int J 
Numer Methods Eng 1995; 38:119–35. 

[18] Xu S, Grandhi RV. Effective two-point 
function approximation for design 
optimization. AIAA J 1998;36(12): 2269 75. 

[19] Lamberti L, Pappalettere C. Comparison of 
the numerical efficiency of different 
sequential linear programming based on 
algorithms for structural optimization 
problems. Computer and Structures 2000; 
76:713–28. 

[20] Lamberti L, Pappalettere C. Move limits 
definition in structural optimization with 
sequential linear programming–– Part II: 
Numerical examples. Computer and 
Structures, 2003; 81:215–38. 

[21] Kang Seok Lee, Zong Woo Geem, A new 
structural optimization method based on the 
harmony search algorithm Computers and 
Structures 82 (2004) 781-798. 

[22] Schmit Jr LA, Farshi B. Some 
approximation concepts for structural 
synthesis. AIAA J 1974; 12(5):692–9. 

[23] Schmit Jr LA, Miura H. Approximation 
concepts for efficient structural synthesis. 
NASA CR-2552, Washington, DC: NASA; 
1976. 

[24] Venkayya VB. Design of optimum 
structures. Computer and Structures 1971; 
1(1–2):265–309. 

[25] Gellatly RA, Berke L. Optimal structural 
design. AFFDLTR- 70-165, Air Force Flight 
Dynamics Lab., Wright- Patterson AFB, 
OH; 1971. 

Area Members 
Group Truss Members 

A1 1, 2, 3, 4 
A2 5, 6, 7, 8, 9, 10, 11, 12 
A3 13, 14, 15, 16 
A4 17, 18 
A5 19, 20, 21, 22 
A6 23, 24, 25, 26, 27, 28, 29, 30 
A7 31, 32, 33, 34 
A8 35, 36 
A9 37, 38, 39, 40 

A10 41, 42, 43, 44, 45, 46, 47, 48 
A11 49, 50, 51, 52 
A12 53, 54 
A13 55, 56, 57, 58 
A14 59, 60, 61, 62, 63, 64, 65, 66 
A15 67, 68, 69, 70 
A16 71, 72 
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