

 Mustansar Ali Ghazanfar and Adam Prugel-Bennett

Abstract—A coalition is a set of self-interested agents that agree

to cooperate for achieving a set of goals. Coalition formation is an

active area of research in multi-agent systems nowadays. Central

to this endeavour is the problem of determining which of the

many possible coalitions to form in order to achieve some goal,

which is called coalition structure generation. Coalition structure

generation problem is extremely challenging due to the number

of possible solutions that need to be examined, which grows

exponentially with the number of agents involved. Generally,

agents would enumerate all possible coalitions, store them in

memory, and then try to construct the coalition structure that

maximizes the sum of the values of the coalitions. However, this is

not feasible when we have a large number of agents, and other

constraints on execution time, and memory. Hence, there is a

need to develop an algorithm that can generate solutions rapidly

for large number of agents while can provide bounds on the value

of solution as well. With this in mind, we propose two new

heuristics, namely LocalSearch and GreedySearch, for

generating the coalition structure, which satisfy these properties.

We empirically show that these heuristics are able to return

‘good-enough’ solutions in very short time. They enhance the

performance of state of the art algorithm, IP (proposed by [12])

in terms of increased lower bound, anytime property, and

solution quality. Furthermore, we implemented different

heuristics for selecting a sub-space in the IP algorithm and show

how the time required to find a good-enough solution depends on

the selection of a sub-space in the IP algorithm.

Index Terms—Multi-agent systems, Coalition formation,

Coalition structure generation, Heuristics

 I. INTRODUCTION

 Cooperation among agents is an important keystone in

Multi-Agent Systems (MAS), which enables them to solve a

problem efficiently. Agents cooperate in many economic

milieus on issues of common interest, which results in the

formation of coalition [1]. For this purpose, agents need to

determine the optimal set of agents with whom to enter into a

coalition (i.e. the best grouping of agents). This problem is

formally referred to as the Coalition Structure Generation

(CSG) problem.

 Suppose that we are given set of agents 1,2, …… 𝑛 𝜖 𝐴, and

the value of a coalition , s, is specified by a characteristic

function v(.). Then the value of the coalition structure (CS) is:

𝑉 𝐶𝑆 = (𝑣𝑠)

𝑆 𝜖 𝐶𝑆

Generally, the goal is to maximize the social welfare by

discovering the optimal coalition structure [2].

CS* = arg 𝑚𝑎𝑥𝑆∈𝐶𝑆 𝑉(𝐶𝑆)

 Finding the optimal coalition structure is very challenging

as the computational complexity of finding the optimal

coalition structure is exponential
1
 in the number of agents and

is shown to be NP-hard [3]. To date, a number of algorithms

have been proposed to solve CSG problem, but there has been

less work on algorithms that can generate good-enough

solutions quickly. In this paper, we propose new heuristics to

solve this problem and show how good-enough solution can

be generated, while balancing the properties, such as

execution time and memory.

 II. RELATED WORK

 Existing literature defines various CSG algorithms that can

be classified into three main classes: Dynamic Programming

(DP) based algorithms, heuristic based algorithms, and

anytime algorithms [4]. Dynamic programming algorithms

generate optimal solution (i.e. optimal coalition structure) with

minimal computational complexity. They provide a guarantee

on the performance of the algorithm in the worst-case

scenarios. [5], [6], [7] develop DP based algorithms but these

algorithms can not be used for large number of agents (>20).

Heuristic based algorithms are not designed to find the optimal

solution; rather their focus is on finding good solutions. In this

context, [8] employ an order-based genetic algorithm (OBGA)

as a stochastic search process to discover the optimal coalition

structure. The main limitation of this algorithm is that, it

provides no guarantee about finding the optimal CS, and it

1 The number of coalition structure grows in O(𝑛𝑛) with the number

of agents [3].

Novel Heuristics for Coalition Structure

Generation in Multi-agent Systems

Manuscript received March 10, 2010. The work reported in this paper
has formed part of the Instant Knowledge Research Programme of Mobile

VCE, (the Virtual Centre of Excellence in Mobile & Personal

Communications), www.mobilevce.com. The programme is co-funded by
the UK Technology Strategy Board‘s Collaborative Research and

Development programme. Detailed technical reports on this research are

available to all Industrial Members of Mobile VCE. The authors would like
to thank Sarvapali D. Ramchurn and Talal Rahwan for their support.

 Both authors are with School of Electronics and Computer Science,

University of Southampton, Highfield Campus, SO17 1BJ, United

Kingdom (phone: +44 (023) 80594473; fax: +44 (023) 80594498; email:

{mag208r,adp}@ecs.soton.ac.uk).

Proceedings of the World Congress on Engineering 2010 Vol I
WCE 2010, June 30 - July 2, 2010, London, U.K.

ISBN: 978-988-17012-9-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2010

cannot specify any bounds on the quality of the optimal CS.

[9] developed a greedy algorithm, which takes only coalitions

up to a certain size into consideration. Its limitation is that it

provides no guarantee on the quality of its solutions compared

to the actual optimal. Anytime algorithms return an initial

solution, and then improve on the quality (and establish better

bound gradually) of the solution as they search more of the

space. In this context, [3] proposed an anytime algorithm that

can establish a bound on quality of the solution, however, the

algorithm has to search entire search space, to generate a

guaranteed optimal solution
2
 and the bounds provided by the

algorithm are not valuable for practical use. Based on this

concept, [10] proposed another anytime algorithm that can

also establish a bound on the quality of solution but employ

different searching mechanism and have the same demerits.

[11, 12] proposed a state of the art anytime algorithm, IP, but

again it has to search entire space in order to generate an

optimal solution.

 III. BACKGROUND: INTEGER PARTITION GRAPH

AND IP ALGORITHM

 In [12] the authors proposed an efficient search space

representation that can be used for finding the optimal solution

efficiently. They called this representation Integer Partition

Graph. In this representation, they partitioned the search space

𝑝 by defining sub-spaces that contain coalition structures that

are similar according to the ‗integer partitions‘
3
 of the number

of agents. This can be defined by a function 𝐹: 𝖕G , where

G is the set of integer partition of n. Then they defined a pre-

image (or inverse image) of an integer partition G as follows:

𝑃𝐺 = 𝐹−1 𝐺 .

 Each pre-image, which represents a sub-space in the integer

partition graph, encloses all the coalition structures

corresponding to the same integer partition G.

 Fig. 1 shows an integer partition graph for 4 agents. We

observe that sub-spaces have been categorized into levels,

based on the number of parts within the integer partitions. In

general, we have n levels, where n is the number of agents.

Each level, 𝖕𝑖 comprises of all the sub-spaces that correspond

to an integer partition with 𝑖 parts.

 Given this representation, they computed the Upper Bound
4

(UB) and Lower Bound
5
 (LB) in each sub-space 𝑃𝐺 as follows:

Let 𝐿𝑠 be the list of coalitions of size s, and let

2 i.e. bound=1
3 Integer partition of n is a multiset of positive integers that add up to

exactly n.
4 UB places an upper limit on the value of the optimal solution, i.e.

no coalition structure in a sub-space can have value greater than its

UB.
5 LB places a lower limit on the value of the optimal solution, i.e. the

solution at worse will be greater than or equal to this LB.

Fig. 1: Example of the integer partition graph for 4 agents [12].

𝑚𝑎𝑥𝑠 , 𝑚𝑖𝑛𝑠 and 𝑎𝑣𝑔𝑠 be the maximum, minimum, and

average value of the coalition in 𝐿𝑠 respectively.

Now given an integer partition G, let 𝑇𝐺 be the Cartesian

product of the lists 𝐿𝑠 : 𝑠 𝜖 𝐺, i.e.

𝑇𝐺 = (𝐿𝑠)
𝐺(𝑠)

𝑠 𝜖 𝐺
,

where G(s) is the multiplicity of s in G.

 Now consider the value 𝑀𝐴𝑋𝐺 obtained by adding the

maximum value of each element (i.e. coalition list) in 𝑇𝐺 .

Formally, it can be represented as follows:

𝑀𝐴𝑋𝐺 = 𝑚𝑎𝑥𝑠 𝑠 𝜖 𝐺 × G(s) .

 This value is an upper bound on the best coalition structure

in 𝑃𝐺 . Now the average value of all the solutions in 𝑃𝐺 ,

denoted by 𝐴𝑉𝐺𝐺 , can be computed immediately after

scanning the input, by adding the averages of the coalition lists

in 𝑃𝐺 . If we consider G= 𝑔1 , 𝑔2, … , 𝑔|𝐺| as an integer

partition, and 𝑎𝑣𝑔𝑔𝑖 as the average of the values of all

coalition in 𝐿𝑔𝑖 , then it can be computed as follows
6
:

𝐴𝑉𝐺𝐺 = 𝑎𝑣𝑔𝑔𝑖
𝐺
𝑖=1 .

 Furthermore, they argued that it is better to specify 𝐴𝑉𝐺𝐺 as

lower bound. The reason behind this is that one can prune a lot

of search space by improving the LB
7
 and average value of a

sub-space is usually better than the minimum value.

 Two main steps that IP requires in order to search the space

using this representation are,

a. Scanning the input in order to compute the bounds (i.e.

𝑀𝐴𝑋𝐺 and 𝐴𝑉𝐺𝐺) for every subspace 𝑃𝐺 .

6 For proof of this theorem, refer to [12].
7Our heuristic (LocalSearch) improves the LB of IP drastically.

Proceedings of the World Congress on Engineering 2010 Vol I
WCE 2010, June 30 - July 2, 2010, London, U.K.

ISBN: 978-988-17012-9-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2010

b. Selecting and searching within the remaining sub-

spaces—we can apply different selection functions within

this step (discussed in next section).

 To get the unbiased performance evaluation of IP with other

state of the art algorithms, they tested it under different

distributions. They used the normal, uniform, and NDCS
8

(Normally Distributed Coalition Structures) input distribution,

and benchmarked it against the other state-of-the-art algorithm

IDP. The results are shown in fig. 2.

Fig. 2: The time required to find the optimal solution for IDP and IP under

NDCS, Normal, and Uniform Distributions [12]. IDP was found to be 15

times slower than IP.

 They showed that IP was faster than IDP in finding the

optimal coalition structure. Furthermore, they noted that IP

was slower in finding the solution in the case of NDCS
9
.

 IV. PROPOSED HEURISTICS

A. LocalSearch Heuristic

 We assume that the input to coalition structure generation

algorithm is the value associated to each coalition, v(C), where

C 𝜖 2𝐴/{𝜙}. We further assume that input is given as follows:

C 𝐿𝑠 ∀𝑠 𝜖 {1,2, … . . 𝑛} and v 𝐿𝑠 ∀𝑠 𝜖 {1,2, … . . 𝑛}, where

C 𝐿𝑠 is a list containing the coalitions and v 𝐿𝑠 is a list

containing the values of all the coalitions of size s.

 Now we define some notations. Let max (𝑣 (𝐿𝑠)) be the

maximum value present in a list of value 𝑣(𝐿𝑠). Let MAX

consists of memory locations
10

, that contain the maximum

values (i.e. max (𝑣 (𝐿𝑠))) from each list of values present in G.

Furthermore, let 𝑉𝑀𝑎𝑥 be the maximum value present in MAX

8 See appendix A.
9 Our heuristics are more successful in this case.
10 Its size is equal to the size of corresponding integer partition that

we want to search, i.e., |MAX|= |G|.

(i.e. 𝑉𝑀𝑎𝑥 = max(𝑀𝐴𝑋)), 𝐿𝑀𝑎𝑥 be the list of coalition that

contains this value 𝑉𝑀𝑎𝑥 , and 𝐶𝑀𝑎𝑥 be the coalition that

corresponds to the value 𝑉𝑀𝑎𝑥 .

 Like IP algorithm we first scan the value of coalition of size

n (called grand coalition), scan the values of coalitions of size

1 (called singleton coalition), and search the level 2 (i.e. 𝔭2).
At this point, we can compute the best solution found so for.

Then we run LocalSearch heuristic that computes a good-

enough solution.

 The pseudo code of the LocalSearch heuristic can be

outlined as follows:

Algorithm: LocalSearch()—Scans input, generates CS, and

improves the LB of IP.

Input: C 𝑳𝒔 ∀𝒔 𝝐 {𝟏,𝟐, … . . 𝒏}, v 𝑳𝒔 ∀𝒔 𝝐 {𝟏, 𝟐, … . . 𝒏}, set of

agents (A = 𝒂𝟏, … , 𝒂𝒏), an integer partition (G= 𝒈𝟏, 𝒈𝟐, … , 𝒈|𝑮|).

Output: coalition structure, value of the coalition structure, time

required to generate the coalition structure.

1. Set solution= ―‖, value=0

2. end= |G| // Size of G

3. t1=start timer;

//Loop until we finish finding a valid solution. In each iteration,

we pick the maximum possible coalition value from all available

coalitions in that sub-space

4. While (end>=1)

//From step 5 to 7 we load lists into memory, pick maximum

value of each list, and store these maximum values in an array

MAX

5. Get lists of coalitions, C 𝑳𝑮 , from A

6. Get lists of values, v 𝑳𝑮 , corresponding to C 𝑳𝑮

7. Get the maximum value present in each list of value and store

them in an array MAX, i.e. MAX= [max (𝒗(𝑳𝒈𝟏)),

max(𝒗(𝑳𝒈𝟐),….. max (𝒗(𝑳𝒈|𝑮|))] //pick maximum value from

each list of values in G

//From step 8 to 10, we find the maximum value 𝑽𝑴𝒂𝒙, from

MAX array and pick the coalition 𝑪𝑴𝒂𝒙 which corresponds to

this value

8. Get element, 𝑽𝑴𝒂𝒙, which has the maximum value in MAX,

i.e. 𝑽𝑴𝒂𝒙= max(MAX)

9. Find index of 𝑽𝑴𝒂𝒙 in MAX and find corresponding list, 𝑳𝑴𝒂𝒙

from G, which contains this element 𝑽𝑴𝒂𝒙 //find out the list

which contains this maximum value, 𝑽𝑴𝒂𝒙

10. Search for the coalition, 𝑪𝑴𝒂𝒙, which has value 𝑽𝑴𝒂𝒙, in

corresponding list 𝑳𝑴𝒂𝒙

//In step 11 and 12, we add 𝑽𝑴𝒂𝒙 and 𝑪𝑴𝒂𝒙 in solution value

and solution respectively

11. Value = value+ 𝑽𝑴𝒂𝒙 //add coalition value

12. Solution = solution + 𝑪𝑴𝒂𝒙 //add coalition

// From step 13 to 17, we update (except in last iteration) MAX,

G, and A

13. If !(end ==1)

14. Update MAX: set all element of MAX to zero,

and set |MAX|= |MAX| -1

15. Update G: delete 𝑳𝑴𝒂𝒙 from G, and set |G| = |G| -1

16. Update A: A= A\𝑪𝑴𝒂𝒙

Proceedings of the World Congress on Engineering 2010 Vol I
WCE 2010, June 30 - July 2, 2010, London, U.K.

ISBN: 978-988-17012-9-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2010

17. End if

18. end =end -1; //update loop counter

19. End while

20. t2=stop timer;

21. Return (solution, value, t2-t1)

 At start, we pick up the integer partition G, and load its list

of coalitions and values in memory (step 5 and 6). Then we

find the maximum value from each list and store these values

in an array, MAX (step 7). Now we find the maximum

value, 𝑉𝑀𝑎𝑥 , from this array and get the coalition list, 𝑳𝑀𝑎𝑥

,that contains this value. From this list, we find the

coalition, 𝑪𝑀𝑎𝑥 that corresponds to this maximum value (step

8 to 10). Then, we store this value, and the corresponding

coalition (step 11 and 12). At end, we update MAX array by

decreasing its dimension by one and initializing by zeros,

update our agent set
11

 which ensure that we generate only the

valid coalition structure, and update G by deleting the list,

𝑳𝑀𝑎𝑥 , from memory (step 13 to 17). We repeat this process

until we finish searching the possible maximum values from

all the lists in G, and then return our solution, corresponding

value, and searching time.

B. GreedySearch Heuristic

 This heuristic is greedy because it starts by discovering the

coalition that has the highest value among all the input

coalitions. Then it finds all possible integer partitions that can

go with this value. Afterwards, it chooses integer partition

according to the following selection criteria: chooses integer

partition that has the highest average utility, chooses integer

partition that has the highest UB, and chooses integer partition

that has the highest sum of average and UB. Next, we feed

these integer partitions to the LocalSearch heuristic. In this

way, we guarantee that we can come up with a good solution

at low cost.

 Now we define some notations. Let 𝑉𝑆𝑝𝑎𝑐𝑒𝑀𝑎𝑥 be the

highest value among all the input values, 𝐶𝑆𝑝𝑎𝑐𝑒𝑀𝑎𝑥 be the

coalition which corresponds to the value 𝑉𝑆𝑝𝑎𝑐𝑒𝑀𝑎𝑥 ,

𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 𝑆𝑝𝑎𝑐𝑒𝑀𝑎𝑥 encloses all the integer partitions, which

contain |𝐶𝑆𝑝𝑎𝑐𝑒𝑀𝑎𝑥 | as an element, and 𝐼𝑃𝑠𝑖𝑧𝑒 (Where size≤

 |𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑆𝑝𝑎𝑐𝑒𝑀𝑎𝑥 |) is such an integer partition.

 The pseudo code of GreedySearch heuristic can be outlined

as follows:

Algorithm: GreedySearch()— Generate solution quickly.

Input: C 𝑳𝒔 ∀𝒔 𝝐 {𝟏,𝟐, … . . 𝒏}, v 𝑳𝒔 ∀𝒔 𝝐 {𝟏, 𝟐, … . . 𝒏}, set of

agents (A = 𝒂𝟏, … , 𝒂𝒏), Set of possible Integer Partition (G =

 𝑮𝟏, 𝑮𝟐, … , 𝑮𝒏).
Output: solution, value of solution, time required to generate the

solution.

1. Set solution[]= ―‖, value[]=0.0, utility[]=0.0 ,

conspicuousNode[]=0, time[]=0; //creates 3 instances: [0] for

11 This step is very crucial and is required to save resources. Further

details can be found in [4].

the highest UB, [1] for highest average, and [2] for highest (UB

and average)

2. t1=start timer;

//From step 3 to 7, we find the maximum value in the space and

determine all the sub-spaces which contain this value

3. Get lists of coalitions, C 𝑳𝓰 , from A

4. Get lists of values, v 𝑳𝓰 corresponding to C 𝑳𝓰

5. Find value, 𝑽𝑺𝒑𝒂𝒄𝒆𝑴𝒂𝒙, which is the maximum value among all

the values in v 𝑳𝓰

6. Get coalition, 𝑪𝑺𝒑𝒂𝒄𝒆𝑴𝒂𝒙, corresponding to 𝑽𝑺𝒑𝒂𝒄𝒆𝑴𝒂𝒙

7. Get all integer partitions which can go with |𝑪𝑺𝒑𝒂𝒄𝒆𝑴𝒂𝒙| as first

element and store them in 𝑷𝒂𝒓𝒕𝒊𝒕𝒊𝒐𝒏𝑺𝒑𝒂𝒄𝒆𝑴𝒂𝒙, i.e.

𝑷𝒂𝒓𝒕𝒊𝒕𝒊𝒐𝒏𝑺𝒑𝒂𝒄𝒆𝑴𝒂𝒙={ [|𝑪𝑺𝒑𝒂𝒄𝒆𝑴𝒂𝒙|, …],…, [|𝑪𝑺𝒑𝒂𝒄𝒆𝑴𝒂𝒙|, ….]}

= { [𝑰𝑷𝟏], [𝑰𝑷𝟐], …. }, where 𝒑𝒂𝒓𝒕𝒊𝒕𝒊𝒐𝒏𝑺𝒑𝒂𝒄𝒆𝑴𝒂𝒙 𝝐 G

 //From step 8 to 23, we discover the sub-space which can at

expectation give us good enough solution

8. end= |𝑷𝒂𝒓𝒕𝒊𝒕𝒊𝒐𝒏𝑺𝒑𝒂𝒄𝒆𝑴𝒂𝒙|, size=1

9. Set conspicuousNode [0]= conspicuousNode

[1]=conspicuousNode [2]=𝑰𝑷𝟏 ;
10. while (size <= end)

11. Iterate through, 𝑰𝑷𝒔𝒊𝒛𝒆 , from second to last element

//we skip first element, as we know that it will be there in every

solution

12. compute UB, LB, and UB + LB

13. If utility[0] < UB

14. utility[0] = UB, conspicuousNode[0] = 𝑰𝑷𝒔𝒊𝒛𝒆

15. end if

 //Update the IP which contains highest sum

16. If utility[1] < LB

17. utility[1] = LB, conspicuousNode[1] = 𝑰𝑷𝒔𝒊𝒛𝒆

18. end if

//Update the IP which contains highest average

19. If utility[2] < UB+LB

20. utility[2] = UB+LB, conspicuousNode[2] = 𝑰𝑷𝒔𝒊𝒛𝒆

21. end if

//Update the IP which contains highest sum

22. size++; //Update loop counter

23. end while

 //From step 24 to 30, we call the LocalSearch algorithm with

the selected integer partition

24. (solution[0], value[0], time[0]) := LocalSearch (v 𝑳𝑮 ,

C 𝑳𝑮 , 𝑨, 𝐜𝐨𝐧𝐬𝐩𝐢𝐜𝐮𝐨𝐮𝐬𝐍𝐨𝐝𝐞[𝟎])
25. If (conspicuousNode[1] != conspicuousNode[0])

26. (solution[1], value[1], time[1]) := LocalSearch (v 𝑳𝑮 ,

C 𝑳𝑮 , 𝑨, 𝐜𝐨𝐧𝐬𝐩𝐢𝐜𝐮𝐨𝐮𝐬𝐍𝐨𝐝𝐞[𝟏])
27. End if //This step ensures that we are not going through same

integer partition twice

28. If ((conspicuousNode[2] != conspicuousNode[0]) &&

 (conspicuousNode[2] != conspicuousNode[1]))

29. (solution[2], value[2], time[2]):= LocalSearch (v 𝑳𝑮 ,

C 𝑳𝑮 , 𝑨, 𝐜𝐨𝐧𝐬𝐩𝐢𝐜𝐮𝐨𝐮𝐬𝐍𝐨𝐝𝐞[𝟐])
30. End if //This step ensures that we are not going through same

integer partition twice

31. t2=stop timer;

32. Return (solution[], value[], t2-t1)

Proceedings of the World Congress on Engineering 2010 Vol I
WCE 2010, June 30 - July 2, 2010, London, U.K.

ISBN: 978-988-17012-9-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2010

 We start by finding the maximum value among all the input

values (step 3 to 5). Then we find the sub-spaces that contain

this maximum value (step 6 to 7). Afterwards, we find the

utility (in terms of highest UB, LB and sum of UB and LB) of

each such sub-space and choose the sub-spaces that give us

the highest utility (step 8 to 23). Then, we search within these

sub-spaces by using the LocalSearch heuristic (step 24 to 30),

and return the solution.

C. Selection of a Sub-space in the IP Algorithm

 We assume that we want to find a good-enough
12

 solution

and we have constraint on the search time. We can make a

reasonable selection according to the requirements, by

choosing a sub-space according to its normalized size, UB,

and LB. For instance, given constraint on searching time, we

can pick a sub-space that has the highest (UB + 1/Size) rather

than going for a sub-space that has the highest UB. In the

former case, we can generate solution much quickly because it

contains the small amount of possible solutions. Whereas, in

the latter case, it can contain millions of possible solutions and

we might not have enough time to search them. Hence, given

such priorities, we can choose sub-spaces that can generate

required solution more efficiently than the other ones.

 We implemented the following important heuristics for

selecting a sub-space: Select sub-space that has the highest

UB, highest LB, highest (UB+LB), highest (UB + 1/size
13

),

highest(LB+1/size), highest ((UB+LB) +1/size), lowest

((UB+LB) +1/size), highest ((UB-LB) +1/size), lowest ((UB-

LB) +1/size), and smallest size.

 V. ANALYSIS AND RESULTS

 In this section, we empirically evaluate our heuristics. We

used Java JDK 1.6 as a development language and an Intel 3.2

GHZ dual core PC with 3GB of RAM for running our

experiments.

A. LocalSearch Heuristic

 We plug-in the code of LocalSearch heuristic in the IP

algorithm and recorded the algorithm‘s performance for

different number of agents (from 8 to 22). Furthermore, we

used the standard instances of the coalition structure

generation problem
14

.

 In the case of NDCS distribution, the average results

obtained by running the algorithm for 50 times are shown in

fig. 3. It is clear that LocalSearch heuristic is able to return

greater than 80% optimal solutions for 8 to 15 agents, and

greater than 75% solutions for 16 to 22 agents. In the lower

plot, we observe that the increase in the LB* (optimal LB

computed by IP while scanning the input and searching the

first two layers) is between 5-10%. Furthermore, the total time

taken by the IP algorithm is nearly zero for 8 to 15 agents and

12

 Solution with bound > 1
13

 Size has been normalized with respect to the largest size in

the space.
14

 See appendix A.

is less than 400ms for 16 to 22 agents. It is worthy to note that

in case of 22 agents, this heuristic returns a 75% optimal

solution (with 8% increase in the LB*) in 300ms which is very

small. This is because; we are not exploring all possible

solutions of the search space, which reduces the exponential

nature of the problem. In fact, the complexity of the

LocalSearch heuristic depends on the number of possible

integer partition of n, (where n is the number of agents) and is

independent of the number of possible solutions in the entire

space.

 Similar results were obtained in the case of normal

distribution (not shown), where it returns greater than 95%

optimal solutions for 8 to 15 agents and greater than 92%

optimal solutions for 16 to 22 agents. We observe that the

increase in the LB* is less than 4%. Furthermore, the time

taken to return solutions is the same as in the NDCS case.

 The results were not promising (not shown) for uniform

distribution. For this distribution, the increase in the LB* is

less than 1% when number of agents are less than 14, and is

zero when the number of agents increases.

 Our heuristic gives better results in the case of NDCS

distribution, than normal and uniform distributions. The

reason is that, in the NDCS case coalition values have more

spread (due to the high sigma value)
15

 as compared to normal

and uniform cases; and LocalSearch heuristic can easily pick

these values. For the normal distribution this spread is small

(as sigma value lies between 0 and 1)
16

, so increase in LB* is

smaller as compared to the NDCS case. The bad performance

of LocalSearch heuristic in case of uniform distribution comes

from the fact that IP finds 95 to 99% optimal solution in the

second level
17

, while scanning the input.

 Now we show how this heuristic improves the anytime

property of the IP algorithm. For this purpose, we observe the

behaviour of the heuristic while it visits each sub-space. To

this end, we assume that we have 15 agents and values have

been drawn from the NDCS distribution. Furthermore, we

want to find a solution which is 85% optimal. It is worthy to

note that algorithm will stop only if it is successful in finding

the required optimal solution or it has visited all the sub-

spaces. The behaviour of the heuristic is shown in fig. 4. In

fig. 4, the percent increase in LB (in lower plot) refers to

(
𝑳𝑩_𝑹𝒆𝒂𝒍𝑮− 𝑨𝑽𝑮𝑮

𝑨𝑽𝑮𝑮
) ∗ 100, where 𝐿𝐵_𝑅𝑒𝑎𝑙𝐺 is the solution

computed by the LocalSearch heuristic in a particular sub-

space G. The solid line (in the upper plot) shows that the

solution is 77% optimal before the IP algorithm calls the

LocalSearch heuristic. We record the results after LocalSearch

heuristic visits each sub-space (dotted line in the upper plot).

Note that the solution becomes 85% optimal (i.e. 𝑥2 − 𝑥1 =

15

 See appendix A.
16

 We run our heuristic wth 𝜎 = 0.1.
17

 In fact, in uniform distribution, coalitions of larger size have

more value as compared to the smaller ones; hence searching

the second layer returns the 95 to 99% optimal solution. See

appendix A for more information.

Proceedings of the World Congress on Engineering 2010 Vol I
WCE 2010, June 30 - July 2, 2010, London, U.K.

ISBN: 978-988-17012-9-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2010

Fig. 3: LocalSearch heuristic for the NDCS distribution. The ‗time (ms) taken

by LSA‘ refers to the time LocalSearch heuristic took to compute the solution,

and the ‗time (ms) taken by IP‘ refers to the time IP algorithm took to scan the

input, search the second level, and run the LocalSearch or GreedySearch

heuristic to completion18.

8%, which corresponds to the increase in the solution quality)

after visiting a few sub-spaces and then algorithm stops and

returns the solution. This behaviour shows that the

LocalSearch heuristic improve the anytime property of the IP

algorithm.

 Note that this heuristic increases the solution quality of the

IP algorithm as well. Moreover, the percent increase in the

solution quality is at least equal to the percent increase in the

LB*
19

.

B. GreedySearch Heuristic

 We plug-in the GreedySearch heuristic in the IP algorithm,

run the algorithm for 15 to 27 agents, stop it when the

GreedySearch heuristic finishes finding a solution, and record

the results. Furthermore, we run our algorithm for 50 times,

and reported the average results. The results in the case of

NDCS distribution are shown in fig. 5.

 Fig. 5 shows that the GreedySearch heuristic is able to find

70 to 75% optimal solutions in less than 400ms. Although the

increase in LB* is between 2-4%, but it is a significant

improvement, as time taken by it to return a solution is very

small. Similar results were observed in the case of normal

distribution. Furthermore, for uniform distribution, the results

18 The terms ‗time (ms) taken by LSA‘ and ‗time (ms) taken by IP‘

have the same meaning for all figures.
19 For proof, refer to appendix B.

Fig. 4: How LocalSearch heuristic improves the anytime property of the IP

algorithm.

were not statistically significant (The reason is the same, as

discussed before).

 Note that for 27 agents, this heuristic returns a good-enough

solution in 410ms that is 10 times less as compared to the time

taken by the IP algorithm (5000ms – 410ms) to scan the input

and search the second level. It is worth noting that, for 27

agents and NDCS distribution, finding an optimal solution can

take many hours (or days) as shown in fig. 1. Hence, one may

prefer a good solution over optimal for setting where one has

constraint over time (for instance, in real-time applications).

C. Selection Functions for IP Algorithm

 We assume that we want to find a 92% optimal solution
20

.

We recorded the performance of the IP algorithm for 15 to 21

agents against uniform, normal, and NDCS distribution.

Furthermore, we run our algorithm 70 times for 15 to 19

agents and 50 times for 20 to 21 agents, and recorded the

average results. The results in the case of NDCS distribution

are shown in fig. 6
21

.

20

 We take this value as an example. Any other value less than

100% can be assumed. Furthermore, nearly similar results

were observed for 85% optimal solution.
21

 Similar results were observed for normal and uniform

distribution.

8 10 12 14 16 18 20 22
75

80

85

90

%
O

p
tim

a
l

8 10 12 14 16 18 20 22
0

200

400

IP
 T

im
e

 (
m

s
)

8 10 12 14 16 18 20 22
0

100

200

300

L
S

A
 T

im
e

 (
m

s
)

8 10 12 14 16 18 20 22
0

5

10

Number of Agents

%
In

c
r

in
 L

B
*

50 52 54 56 58 60 62 64 66 68 70
65

70

75

80

85

Time (ms)

%
O

p
ti
m

a
l

Solution is x1% opimal before entering the LocalSearch

Solution return by LocalSearch after searching a sub-space is x2% optimal

How LocalSearch increase the Anytime property of IP

50 52 54 56 58 60 62 64 66 68 70
20

40

60

80

100

120

Time (ms)

%
In

c
r

in
 L

B

% Increase in LB within sub-spaces

% Increase in LB after searching a sub-space

Proceedings of the World Congress on Engineering 2010 Vol I
WCE 2010, June 30 - July 2, 2010, London, U.K.

ISBN: 978-988-17012-9-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2010

Fig. 5: GreedySearch heuristic for the NDCS distribution22.

Fig. 6 shows that, the following sub-spaces are found good in

generating the required solution:

 Sub-spaces having the highest LB with the smallest size

return the solution about 30 to 300% faster than the other

ones. The reason is that, they contain overall high values

of the coalitions; hence, after searching a few solutions,

we may find the desired optimal solution. Furthermore, it

is able to return a good solution faster than others due to

its smaller size.

 Sub-spaces having the highest UB with the smallest size

return the solution about 40 to 200% fasters then the rest

ones (excluding the highest LB +1/Size) one. The reason

is that the highest UB ensures to generate good solution

and smallest size ensures that it can be generated much

quickly.

 Sub-spaces having the smallest size show same behaviour

as that of the highest (UB+1/Size) one. The reason is that,

they can return solution much quickly due to their

smallest size.

 Furthermore, some sub-spaces, such as the one having

lowest ((UB-LB) + 1/Size) are more than 100% slower in

generating the solution. The reason is that, they have large size

and low values of the coalitions. From the results, we can

conclude that the selection of a particular sub-space has

significant effect on the time required to find a good solution.

22

 In fig. 5, the ‗time (ms) taken by GSA‘ refers to the time

GreedySearch heuristic took to compute the solution

Fig. 6: The time required to generate the 92% optimal solution for different

sub-spaces against NDCS distribution.

VI. CONCLUSION AND FUTURE WORK

 Coalition formation is an advanced research area within

multi-agent systems nowadays. Generally, the goal of the

coalition structure generation activity is to maximize the social

welfare by finding the optimal coalition structure, but

exponential nature of the solution space does not allow

making exhaustive search for the optimal solution. Hence, we

may prefer a good solution over an optimal one in settings

where we have constraints on execution time and memory.

From this line of research, we proposed two new heuristics for

coalition structure generation.

 This paper advances the state of the art in the followings:

 First, we proposed a novel heuristic, namely LocalSearch

for coalition structure generation and empirically show

that it generates good-enough solution in short time.

Furthermore, it improves the anytime property, lower

bound, and solution quality of the IP algorithm. The

increased lower bound can prune a major portion of the

exponential search space without going into the space.

 Second, we proposed a greedy heuristics, namely

GreedySearch for finding a good-enough solution,

without going fully to any of the sub-space, in settings

where we have a large number of agents (>20).

 Third, we implemented different heuristics for selecting a

sub-space in the IP algorithm proposed by [12]. We show

that, in order to find a good solution (as opposed by

optimal), the selection of a particular sub-space in the IP

16 18 20 22 24 26
65

70

75

80
%

O
p

tim
a

l

16 18 20 22 24 26
0

2000

4000

IP
 T

im
e

 (
m

s
)

16 18 20 22 24 26
0

200

400

G
S

H
 T

im
e

 (
m

s
)

16 18 20 22 24 26
0

2

4

Number of Agents

%
In

c
r

in
 L

B
*

15 16 17 18 19 20 21 22
0

500

1000

1500

Number of Agents
T

im
e

 (
m

s
)

Lowest((UB-LB)+1/size)

Highest(LB)

Highest((UB-LB)+1/size)

Highest (LB)

Lowest((UB+LB)+1/size)

Smallest (Size)

Highest(UB+1/size)

Highest(UB+1/size)

Proceedings of the World Congress on Engineering 2010 Vol I
WCE 2010, June 30 - July 2, 2010, London, U.K.

ISBN: 978-988-17012-9-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2010

algorithm has significant effect on its performance, in

term of the time required to return the solution.

 As a future work, we would like to integrate our work with

recommender systems [13, 14]. There has been no work in

literature that uses coalition formation among agents for

solving recommender systems problems. If we divide users (or

items) into distinct clusters, then our algorithm can be used in

finding the most relevant users (or items). A K nearest

neighbour based collaborative filtering algorithm can be used

for generating recommendations. Furthermore, proposed

algorithm can be helpful in distributed recommender system.

REFERENCES

[1] Caparrós A., Hammoudi A., and Tazdaït T. (2004). On Coalition

Formation with Heterogeneous Agents. Working Papers 2004.70,

Fondazione Eni Enrico Mattei

[2] Larson H. S., Sandholm T. W. (1999). Anytime coalition structure

generation: an average case study, Proceedings of the third annual

conference on Autonomous Agents, p.40-47, Seattle, Washington,

United States

[3] Sandholm, T. W., Larson, K., Andersson, M., Shehory, O., and Tohme,

F. (1999). Coalition structure generation with worst case guarantees.

Artificial Intelligence, 111(1–2):209–238.

[4] Rahwan, T. (2007) Algorithms for Coalition Formation in Multi-Agent

Systems. PhD thesis, University of Southampton.

[5] Yeh, D. Y. (1986). A dynamic programming approach to the complete

set partitioning problem. BIT Numerical Mathematics, 26(4):467–474

[6] Rothkopf, M. H., Pekec, A., and Harstad, R. M. (1995).

Computationally manageable combinatorial auctions. Management

Science, 44(8):1131–1147.

[7] Rahwan T. and Jennings N. R. (2008b). An improved dynamic

programming algorithm for coalition structure generation. In Proc 7th
Int Conf on Autonomous Agents and Multi-Agent Systems (AAMAS-

08), Estoril, Portugal , volume 3, pages 1417–1420.

[8] Sen, S. and Dutta, P. (2000). Searching for optimal coalition structures.

In Proceedings of the Fourth International Conference on Multiagent

Systems, pages 286–292.

[9] O. Shehory and S. Kraus. Methods for task allocation via agent coalition

formation. Artificial Intelligence, 101(1–2):165–200, 1998.

[10] V. D. Dang and N. R. Jennings. Generating coalition structures with

finite bound from the optimal guarantees. In Proceedings of the Third
International Joint Conference on Autonomous Agents and Multiagent

Systems (AAMAS), pages 564–571, 2004.

[11] T. Rahwan, S. D. Ramchurn, V. D. Giovannucci, V. D. Dang, and N. R.

Jennings. Anytime optimal coalition structure generation. In Proceedings

of the Twenty second Conference on Artificial Intelligence (AAAI-07),
pages 1184–1190, 2007.

[12] T. Rahwan, S. D. Ramchurn, A. Giovannucci, and N. R. Jennings

(2009). An Anytime Algorithm for Optimal Coalition Structure
Generation. Journal of Artificial Intelligence Research (JAIR). 34,

Pages 521-567.

[13] Mustansar Ali Ghazanfar, and Adam Prugel-Bennett, “A Scalable,

Accurate Hybrid Recommender System” , In the 3rd International

Conference on Knowledge Discovery and Data Mining (WKDD 2010),
9-10 Jan 2010, Thailand.

[14] Mustansar Ali Ghazanfar, and Adam Prugel-Bennett, “An Improved

Switching Hybrid Recommender System using Naive Bayes Classifier
and Collaborative Filtering”, In the 2010 IAENG International

Conference on DataMining and Applications (ICDMA10), Hong Kong,

17-19 March, 2010

Proceedings of the World Congress on Engineering 2010 Vol I
WCE 2010, June 30 - July 2, 2010, London, U.K.

ISBN: 978-988-17012-9-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2010

http://eprints.ecs.soton.ac.uk/14894/
http://eprints.ecs.soton.ac.uk/14894/

APPENDIX A

 For benchmarking the coalition structure generation

algorithms, the standard instances of the input value

distribution have been defined as follows [2]:

Normal Distribution: 𝑣 𝐶 = 𝐶 x 𝑝 where 𝑝 ~ 𝑁 𝜇, 𝜎2 ,

𝜇 = 1 𝑎𝑛𝑑 𝜎 = 0.1

Uniform Distribution: 𝑣 𝐶 = 𝐶 x 𝑝 where 𝑝 ~ 𝑈 𝑎, 𝑏 ,

𝑎 = 0 𝑎𝑛𝑑 𝑏 = 1

Sub-additive: 𝑣 𝐶 ≤ 𝑣 𝐶 ′ + 𝑣(𝐶 ′′) where 𝐶 = 𝐶 ′ ∪ 𝐶′′ and

𝑣(𝐶) is uniform as above. (In this case the singleton coalitions

form the optimal structure)

Super-additive: 𝑣 𝐶 ≥ 𝑣 𝐶 ′ + 𝑣(𝐶 ′′) where 𝐶 ′, 𝐶 ′′𝑎𝑛𝑑 𝑣(𝐶)

are as defined above (In this case the grand coalition is the

optimal structure).

 The validity of uniform and normal instances has been

questioned by [13], where the authors claimed that these

instances generate biased results:“we analytically show that

any CSG problem with an input defined according to

distributions of coalition values based on the size of the

coalitions (such as the Normal and Uniform distributions

above) will generate biased results” [13].

 In fact this was the main reason why in the case of uniform

and normal distribution, our Heuristics (LocalSearch and

GreedySearch) did not showed much improvement in the LB*

computed by the IP algorithm.

NDCS (Normally Distributed Coalition Structures): This

instance of the input distribution has been defined by [12], and

is well suited for the coalition structure generation problems.

This instance is defined as follows:

𝑣 𝐶 ~ 𝑁 𝜇, 𝜎2 , where 𝜇 = |𝐶|, 𝜎 = |𝐶|

 In this distribution, the value of every possible coalition

structure is independently drawn from the same normal

distribution

 Furthermore, for this distribution, our heuristics showed

significant improvement in LB* computed by the IP

algorithm.

APPENDIX B

 This comes from the fact that LB* = max (𝑨𝑽𝑮𝑮
∗ , 𝑽(𝑪𝑺′))

where 𝑉 𝐶𝑆 ′ is the best solution found in

levels 𝔭1, 𝔭2, 𝑎𝑛𝑑 𝔭𝑛 . Let 𝐿𝐵_𝑅𝑒𝑎𝑙∗ be the best solution found

by the LocalSearch heuristic. We compute the percent

increased in the LB* as follow: % 𝑰𝒏𝒄𝒓𝒆𝒂𝒔𝒆 𝒊𝒏 𝒕𝒉𝒆 𝑳𝑩∗ =

(
𝑳𝑩𝑹𝒆𝒂𝒍

∗−𝑳𝑩∗

𝑳𝑩∗) * 100. We can easily conclude from this

equation that the % increase in the solution quality is at least

equal to this % increase in the LB* (in case we have LB*=

𝑉(𝐶𝑆′)) and can be greater than this % increase in the LB* (in

case we have LB* = 𝐴𝑉𝐺𝐺
∗).

Proceedings of the World Congress on Engineering 2010 Vol I
WCE 2010, June 30 - July 2, 2010, London, U.K.

ISBN: 978-988-17012-9-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2010

