
 

 

  
Abstract—In this paper, a methodology for solution of 
transient thermal problem is presented using finite-element 
method. A vertical hollow circular cylinder is heated up to a 
specific temperature using moving induction heating, and the 
heated parts then quenched by moving water-air spray. The 
effects of natural convection with air on the both inner and 
outer surfaces of cylinder, and also radiation of outer surface 
of cylinder with ambient, on cooling process are taken into 
account. 
The transient thermal conduction equation is solved to obtain 
temperature distribution produced by the moving heat source 
in work-piece over time with considering of moving free and 
forced (due to spray) convection boundary conditions. This 
procedure includes temperature-dependent properties. 
For quenching of work-piece, a specific kind of atomized 
spray cooling is used. Spray cooling using a mixture of water 
and air with different mass fractions; hence, with spray 
cooling, one can raise or lower the cooling rate by increasing 
or decreasing the amount of liquid in the mixture. 
 

Keywords— water-air spray, cooling process, finite-element 
method, vertical hollow cylinder, temperature distribution  

I. INTRODUCTION 
uenching from high temperatures is usually performed on 
steel to produce high strength levels. However, in 

medium carbon, high carbon, and alloy steels, these rapid 
cooling rates may lead to formation of cracks. Spray cooling 
offers an attractive alternative to uncontrolled rapid quenching 
for thermal processing of steels, and widely used in today’s 
industrial operations including surface hardening, melting, 
brazing, welding, forging and other similar applications. It is 
used in a variety of engineering and materials processing 
applications in the automotive, aerospace and some others. 
With spray cooling, one can raise or lower the cooling rate by 
increasing or decreasing the amount of liquid in the mixture. 
When work-piece is heated to a specified temperature, it must 
be quenched. The quality of cooling is a specified problem by 
itself, and is a complex process. Because, as said before, 
hardness of steel after heat treatment depends on the time of 

                                                           
H.Shokouhmand, Professor of School of Mechanical Engineering, College of 
Engineering, University of Tehran, Tehran, Iran  ( e-mail: hshokoh@ ut.ac.ir).  
S.Ghaffari, M.S. student School of Mechanical Engineering, College of 
Engineering, University of Tehran, Tehran, Iran (corresponding author to 
provide phone: 00989125031913; e-mail: sghaffari@ ut.ac.ir).  

 

cooling. So, cooling of heated body is an important and 
sensitive part in heat treatment, and should be studied 
carefully. Spray cooling using a mixture of water and air was 
found useful in controlling the cooling rate of hot medium-
carbon steel bars. With spray cooling, one can raise or lower 
the cooling rate by increasing or decreasing the amount of 
liquid in the mixture. The atomized spray consists of small 
liquid droplets in a conical jet of air. In this application, water 
is the liquid of choice because of its low cost. However, many 
literatures have been made for single-phase cooling [1-3], 
papers for spray-cooled surface at a high temperature are so 
limited. Because, at the high temperatures flow becomes 
multi-phase, and the heat-transfer relations are not well 
established as they are in single-phase flow. In the other 
words, Spray cooling is a new discussion in high-heat flux 
cooling[4]. Buckingham and Haji-Sheikh [5], described the 
heat transfer characteristics of a spray-cooled surface of 
cylinder at a high temperature before the onset of surface 
wetting phenomena. Experimental heat flux data are presented 
for different liquid mass fractions, and at surface temperatures 
up to 1000C. Thomas and Haji-Sheikh [6], presented finite-
element modeling and experimental verification of spray-
cooling process in a steel cylinder from an initial temperature 
of 1273K. They also demonstrated the prediction of quench 
cracks with commercial finite-element analysis (FEA) using 
available information on a complex heat-transfer phenomenon 
like spray cooling. The temperature fields predicted by the 
model are used as an input for the thermal-stress model to 
predict the occurrence of quench cracks.  
In this publication, the analysis of cooling process of a heated 
cylinder which is heated up using moving heat induction is 
investigated. It means, the magnetic field is first simulated by 
means of solution of maxwell’s electromagnetic field 
equations, and the moving heat source is obtained from this 
magnetic field.  
The review of the previous works showed that some studies 
were conducted on analysis of moving induction heating 
problem to investigate temperature distribution during the 
heating process and they didn’t engage in subsequent 
quenching process sufficiently. However, according to the 
authors’ knowledge, there is no study of thermal analysis of 
moving induction heating with prefect investigation of cooling 
process. The coupled magnetic and thermal problem in a 
vertical hollow circular cylinder must be solved, because the 
material properties in the induction heating depend on the 
temperature.  
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Fig. 10, Distribution of temperature within the axial cut through the 

cylinder at the time of 150s 

 
Fig. 11, Distribution of temperature within the axial cut through the 

cylinder at the time of 200s 

At the beginning of cooling stage, since the temperature is 
high, the heat transfer coefficient due to spray cooling is 
relevant to radiation-dominated region, and gradually with 
decreasing of temperature the heat transfer coefficient is 
evaluated by transient region and convection-dominated 
region equations. Therefore the heat transfer coefficient due to 
spray cooling increases with passing the time. Consequently, 
the slope of the temperature-time curve increases with time 
until the moving spray completely traverses the specified 
point. Then cooling of cylinder happens only by natural 
convection with air. And since the heat transfer coefficient of 
natural convection is so lower than the heat transfer coefficient 
due to spray cooling, cooling of cylinder occurs at a much 
lower rate. This process finishes at the moment when the 
temperature of the any points of cylinder decreases below 

CT finish °=100 . 
 

IV. CONCLUSION 
The spray cooling process of vertical hollow circular cylinder 
which is heated at specified temperature using moving 

induction heating is investigated. . Available experimental 
relations for spray cooling process of steel are used for 
obtaining forced convection heat transfer coefficient for outer 
surface due to spray cooling. Solution to this problem 
described by the coupled Maxwell’s equation (for magnetic 
analysis) and Fourier’s equation (for thermal analysis) with 
temperature-dependent properties and time-variable boundary 
conditions. The effects of natural convection with air and 
radiation on the both internal and external surfaces of cylinder 
have been taken into account.  
The simulation procedure can be used as a useful tool in 
induction coil design and in the selection of process 
parameters. The temperature distribution within work-piece at 
different times and temperature-time curve for different points 
are presented and discussed in this paper.  
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