
 

 

 

  

Abstract— In this paper, mixed convection heat transfer through a 

vertical wavy isothermal channel is investigated numerically. In 

present study, the hot sinusoidal vertical walls are at constant 

temperature and the cold flow enters the channel at the bottom side. 

The numerical model is based on a 2D Navier-Stokes incompressible 

flow and energy equation solver on unstructured grid. The governing 

equations consist of continuity, momentum and energy equations are 

solved numerically by finite element method using Characteristic 

Based Split (CBS) algorithm. The effect of Reynolds, Prandtl and 

Grashof numbers on flow and thermal fields are investigated. The 

variations of local Nusselt number along the vertical walls are also 

presented. 
 

Keywords— Mixed Convection, Finite Element Method, Wavy 

Channel.  

I. INTRODUCTION 

ixed convection involves features from both forced and 

natural flow conditions. In mixed convection flows, the 

forced convection and free convection effects are comparable 

in magnitudes. Thus, mixed convection occurs if the effect of 

buoyancy forces on a forced flow or the effect of forced flow 

on a buoyant flow is significant. The governing non-

dimensional parameters for the description of mixed 

convection flows are Grashof number (Gr), Reynolds number 

(Re) and Prandtl number (Pr). The ratio Gr/Re
2
 is also named 

Richardson number (Ri) that indicate the strength of the 

natural and forced convection flow effects The limiting case 

Ri→0 and Ri→∞ correspond to the forced and natural 

convection flows, respectively.  

It is necessary to study the heat and mass transfer from an 

irregular surface because irregular surfaces are often present in 

many applications such as micro-electronic devices, flat-plate 

solar collectors and flat-plate condensers in refrigerators [1], 

and geophysical applications (e.g., flows in the earth’s crust 

[2]), underground cable systems, electric machinery, cooling 

system of micro-electronic devices, etc. In addition, roughened 

surfaces could be used in the cooling of electrical and nuclear 

components where the wall heat flux is known.  One of the 

reasons why a roughened surface is more efficient in heat 

transfer is its capability to promote fluid motion near the 

surface; in this way a complex wavy surface, a sum of two or 
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more sinusoidal surfaces, is expected to promote a larger heat-

transfer rate than a single sinusoidal surface. This complex 

geometry will promote a correspondingly complicated motion 

in the fluid near the surface; this motion is described by the 

nonlinear boundary-layer equations. This expectation is the 

basis of the current study even though only laminar mixed 

convection is studied. A vast amount of literature about 

convection along a sinusoidal wavy surface is available for 

different heating conditions and various kinds of fluids [3–7]. 

Recently Ashjaee et al. [8] have investigated the problem of 

free convection along a vertical wavy surface experimentally 

and numerically. The investigation was carried out for three 

different amplitude–wavelength ratios and Rayleigh number 

based on the length of the wavy surface ranging from 2.9*10
5
 

to 5.8*10
5
. Results indicate that the frequency of the local heat 

transfer rate is the same as that of the wavy surface and the 

average heat transfer coefficient decreases as the as the 

amplitude- wavelength ratio increases. The natural convection 

heat transfer from an isothermal vertical wavy surface was first 

studied by Yao [9–11] and using an extended Prantdl’s 

transposition theorem and a finite-difference scheme. He 

proposed a simple transformation to study the natural 

convection heat transfer from isothermal vertical wavy 

surfaces, such as sinusoidal surface. Chiu and Chou [12] 

studied the natural convection heat transfer along a vertical 

wavy surface in micropolar fluids. Chen and Wang [13,14] 

analyzed transient forced and free convection along a wavy 

surface in microfluids. Cheng [15,16] has investigated coupled 

heat and mass transfer by natural convection flow along a 

wavy conical surface and vertical wavy surface in a porous 

medium. 

The aim of this study is to investigate the effects of parameters 

such as Grashof number, Reynolds number and Prandtl 

number on flow and thermal fields through the channel. The 

local Nusselt number of vertical walls along the channel at the 

wide range of governing parameters (Re, Pr, Gr numbers) are 

presented. The governing equations including continuity, 

Navier–Stokes and energy equations are solved numerically by 

Galerkin finite element method based on the characteristic 

based split (CBS) algorithm. 

II. GOVERNING EQUATIONS 

A two-dimensional vertical wavy channel and related 

dimensionless boundary conditions are illustrated in Fig. 1. 

The shapes of the side wavy surfaces profile are as the 

following pattern:  
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Where A is the dimensionless amplitude of the wavy surfaces 

and k is the number of undulation (z=5). D and L (L=6D) are 

the mean diameter and the length of the channel, respectively. 

The cold fluid enters the channel with the conditions, T=Tc, 

u=U0 and v=0. The sinusoidal vertical walls of the channel are 

at constant temperature T=Th. The flow is assumed to be 

laminar and the fluid is assumed to be incompressible, with 

constant physical properties except for the density variation 

which is taken into account through the Boussinesq 

approximation. Also viscous dissipation and pressure work are 

considered negligible. 

 

 
Fig1, physical model 

 

Based upon the characteristics scales of D, U0, hT  and cT , the 

dimensionless variables are defined as follows: 
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Therefore the non-dimensional governing equations are (the 

stars were omitted for simplicity): 

 

Continuity equation: 
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U momentum equation: 
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V momentum equation:  
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Energy equation: 
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III. NUMERICAL METHOD 

The governing equations are solved by CBS finite element 

method. The CBS algorithm for the solution of the Navier–

Stokes and energy equation equations can be summarized by 

the following steps[19]: 

 

1.Solution of the momentum equation without the pressure 

term. 

2.Calculation of the pressure using the Poisson equation. 

3.Correction of velocities. 

4.Calculation of energy equation or any other scalar equation. 

By applying the CBS method, the governing equations become 

as follows: 

Step1: 
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Step3: 
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Step4: 
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Where overline parameters represent the nodal quantities. In 

the above equations, 
*~u∆ and 

**~u∆ are intermediate 

velocities, Cu , G, H and τk  are discrete convection, gradient, 

Laplacian and viscous operators and Mu is the mass matrix and 

also 1θ  is the coefficient of stability parameter and 2θ  is a 

coefficient for switching between explicit 02 =θ  and 

implicit ( 10 2 << θ ) scheme of solving the equations. In 

addition we have the following relation between the remaining 

coefficient matrices: 

uEp CCC == , τKHKT
Pr

1
== , uueup KKK == , 

up MM
2

1

β
= , uE MM =                                        (11) 

The terms, fs, Ku , P, Kue and Kup are due to discretization 

along the characteristics and  f, fp  and fe contain the boundary 

conditions. The term fes contains source terms. 

The overlined parameters represent the nodal quantities. The 

non-real time step, t, (pseudo_time step) accelerates solution to 

steady state as fast as possible. The pseudo time step is locally 

calculated and subjected to stability condition. 

 

β+
=∆

u

h
t                                                                     (12)  

Where h is the element size, β  is the artificial compressibility 

parameter [17] and u is the velocity. 

IV. RESULT AND DISCUSSION 

The main parameters of Rayleigh, Prandtl and Reynolds 

numbers on variations of mean Nusselt numbers of left, right 

and bottom and thermal and flow fields are examined. The 

local Nusselt number is calculated by the following equation: 
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Where n denotes the normal direction on a plane. The 

dimensionless stream function ψ is defined as: 
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a:                  (1)                       (2)                     (3) 

 

 
b:                  (1)                      (2)                     (3) 

 
Fig. 2 Isothermal lines(a) and stream functions(b) at Gr=105, Pr=0.7 

for different values of Reynolds number; (1).Re=10, (2).Re=100, 

(3).Re=500 

 

In this study an unstructured linear triangular mesh 

corresponding 1300 nodes is utilized for all cases. Numerical 

solutions are obtained for various values of Gr=10
4
–10

6
, 

Pr=0.01–10 and Re=10–500. 
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a:                  (1)                     (2)                     (3) 

 

 
b:                  (1)                      (2)                     (3) 
 

Fig. 3 Isothermal lines(a) and stream functions(b) at Re=102, Pr=0.7 

for different values of Grashof number; (1),Gr=104, (2).Gr=105, 

(3).Gr=106 

 

Effect of Reynolds number: 

Fig.2 shows the isothermal lines and stream functions at 

Gr=10
5
 and Pr=0.7 for different values of Reynolds number. 

For Re=10, two vertices produce due to uniform velocity of 

fluid at the inlet of the channel. Also plots for stream functions 

show that increment of Reynolds number results in production 

of small vertices at valleys. For Re=10 the temperature of cold 

entering fluid immediately reaches to Th due to low velocity 

and momentum. With increasing Reynolds number the 

isotherms spreads all over the channel. It is also apparent that 

the compression of isotherms is increase due to curvature of 

side walls.  

 

 
a:                  (1)                      (2)                     (3) 

 

 
b:                  (1)                     (2)                     (3) 

 

Fig. 4 Isothermal lines(a) and stream functions(b) at Re=102, Gr=105 

for different values of Prantdl number; (1).Pr=0.01, (2).Pr=0.7, 

(3).Pr=10 
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Effect of Grashof number: 

Fig.3 shows the isothermal lines and streamlines at Re=100 

and Pr=0.7 for different values of Grashof number. With 

increment of Grashof number effect of buoyancy forces 

increases and excels the effect of forced convection which 

leads to decrement of peaks of isothermal lines at the middle 

of the channel. Increment of Grashof number also results in 

compression of isotherms at the inlet of the channel. Also at 

higher values of Grashof number the temperature of cold 

entering fluids will reach to Th sooner than that of lower 

Grashof number. Stream functions for at higher values of 

Grashof number become more condense at the regions near the 

side walls due to stronger convection effects at the middle of 

the channel. 

 

Effect of Prantdl number: 

Fig.4 shows the isothermal lines and streamlines at Re=100 

and Gr=10
5
 for different values of prantdl number. At low 

values of Prantdl number, the temperature of the fluid rapidly 

reaches to the temperature of hot walls due to large value of 

thermal diffusivity. With increasing Prantdl number, increment 

of temperature of fluid will happen slowly, as a result the 

isotherms are more compressed along the channel near the hot 

walls. At Pr=0.01, a circulation will be produce at the valleys 

of the hot walls. With increment of Prandtl number theses 

vertices will disappear gradually.  
 

Local Nusselt number: 

Fig.5 shows the variations of local Nusselt number along the 

hot wall for different values of Grashof number for Re=10
2
 

and Pr=0.7. At the inlet of the channel the local Nusselt 

number is very large due to minimum thickness of boundary 

layer. With increasing y, the local Nusselt number will 

decrease due to decrement of temperature difference and  

 

 
 
Fig. 5. Variations of local Nusselt number along the wavy wall of the 

channel for different values of Grashof number; Re=102, Pr=0.7. 

increment of thickness of boundary layer, this trend will occurs 

more rapid with increment of Grashof number. Local Nusselt 

number will become relative maximum at the peaks of hot 

walls due to curvature of walls which results in increment of 

compression of isotherms. 

 

 
 
Fig. 6. Variations of local Nusselt number along the wavy wall of the 

channel for different values of Reynolds number; Gr=105, Pr=0.7. 

 

 
 
Fig. 7. Variations of local Nusselt number along the wavy wall of the 

channel for different values of Prantdl number; Re=102, Gr=105. 

 

Fig.6 shows the plots for different values of Reynolds number 

for Gr=10
5
 and Pr=0.7. At Re=10 the temperature of the fluid 

reaches to Th rapidly, therefore the local Nusselt number 

become zero. Increment of values of Reynolds number will 

results in increasing of local Nusselt number. Similar to figure 

5 the variations of local Nusselt number has relative maximum 

due to curvature of hot walls. Also with increasing y, the local 

Nusselt number will decrease due to decrement of temperature 

difference and increment of thickness of boundary layer. 
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Fig.7 shows the variations of local Nusselt number along the 

wavy wall of channel for different values of Prantdl number 

for Gr=10
5
 and Re=10

2
. For Pr=0.7 local Nusselt number 

rapidly become zero because the temperature of the fluid 

reaches the temperature of hot walls. With increasing the 

values of Prantdl number local Nusselt number of hot wall will 

increase due to enhanced thermal mixing. Similar to the other 

plots the local Nusselt number will decrease with increasing y 

through the channel due to decreasing the temperature 

difference.  

V. CONCLUSION 

In this work, mixed convection heat transfer through a wavy 

vertical channel has been investigated numerically by Galerkin 

finite element method based on the characteristic based split 

(CBS) algorithm. The effects of parameters such as Grashof 

number, Reynolds number and Prandtl number on flow and 

thermal fields through the channel. Results showed that with 

increasing Reynolds number and decreasing Prantdl number a 

secondary flow is produced at the valleys of hot walls. At 

higher values of Reynolds and Prantdl numbers the 

temperature of the fluid reaches to the value Th later. Local 

Nusselt number of hot walls will decrease gradually through 

the channel and has relative maximum value at the peak of hot 

wavy wall. Also increasing the values of Reynolds and Prantdl 

number result in increasing the local Nusselt number of hot 

wall. 

 

  ACKNOWLEDGEMENT 

The authors are pleased to acknowledge the support of this study by 

University of Tehran, Tehran, Iran. 

Authors also acknowledge help of Miss Moayedi for her valuable suggestions. 

REFERENCES   

 

[1]J.-H. Jang, W.-M. Yan, Mixed convection heat and mass transfer along a 

 vertical wavy surface, Int. J. Heat Mass Transfer 47 (2004) 419–428. 

[2]P.K. Das, S. Mahmud, Numerical investigation of natural convection 

 inside a wavy enclosure, Int. J. Therm. Sci. 42 (2003) 397–406.  

[3]C.P. Chiu, H.M. Chou, Transient analysis of natural convection along a    

 vertical wavy surface in micro polar fluids, Int. J. Eng. Sci. 32 (1994) 

 1933. 

[4]D.A.S. Rees, I. Pop, A note on free convection along a vertical wavy 

 surface in a porous medium, ASME J. Heat Transfer 116 (1994) 505–508. 

[5] D.A.S. Rees, I. Pop, Free convection induced by a vertical wavy surface 

 with uniform heat flux in a porous medium, ASME J. Heat Transfer 117 

 (1995) 547–550. 

[6] Y.T. Yang, C.K. Chen, M.T. Lin, Natural convection of non-newtonian 

 fluids along a wavy vertical plate including the magnetic field effect, Int. 

 J. Heat Mass Transfer 39 (1996) 2831–2842. 

[7] L.S. Yao, Natural convection along a vertical complex wavy surface, Int. 

 J. Heat Mass Transfer 49 (2005) 281–286. 

[8] M. Ashjaee, M. Amiri, J. Rostami, A correlation for free convection heat 

 transfer from vertical wavy surfaces, Heat Mass Transfer 44 (2007) 

 101111. 

[9]L.S. Yao, Natural convection along a wavy surface, ASME J. Heat 

 Transfer 105 (1983) 465–468. 

[10]L.S. Yao, A note on Prandtl_s transposition theorem, ASME J. Heat 

 Transfer 110 (1988) 503–507. 

[11] S.G. Moulic, L.S. Yao, Mixed convection along a wavy surface, ASME 

 J. Heat Transfer 111 (1989) 974–979. 

[12] C.P. Chiu, H.M. Chou, Transient analysis of natural convection along a 

 vertical wavy surface in micropolar fluids, Int. J. Eng. Sci. 32 (1994) 

 1933.1082 J.-H. Jang et al. / International Journal of Heat andMass 

 Transfer 46 (2003) 1075–1083 

[13] C.K. Chen, C.C. Wang, Transient analysis of force convection along a 

 wavy surface in micropolar fluids, AIAA J. Thermophys. Heat Transfer 14 

 (2000) 340–347. 

[14] C.C. Wang, C.K. Chen, Transient force and free convection along a 

 vertical wavy surface in micropolar fluids, Int. J. Heat Mass Transfer 44 

 (2001) 3241–3251. 

[15] C.Y. Cheng, Natural convection heat and Mass transfer near a wavy 

 cone with constant wall temperature and concentration in a porous 

 medium, Mech. Res. Commun.27 (2000) 613–620. 

[16] C.Y. Cheng, Natural convection heat and mass transfer near a vertical 

 wavy surface with constant wall temperature and concentration in a 

 porous medium, Int. Commun. Heat Mass Transfer 27 (2000) 1143–1154. 

 [17] P. Nithiarasu , C.-B. Liu. An artificial compressibility based 

 characteristic based split (CBS) scheme for steady and unsteady turbulent 

 incompressible flows Comput. Methods Appl. Mech. Engrg. 195 (2006) 

 2961–2982. 

 

 

 

Proceedings of the World Congress on Engineering 2010 Vol II 
WCE 2010, June 30 - July 2, 2010, London, U.K.

ISBN: 978-988-18210-7-2 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2010




