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Singularity Analysis of the New Parallel
Manipulator with 6 Degree-of-Freedom

Zhumadil Zh. Baigunchekov, and Myrzabay B. [zmambetov

Abstract — In this paper we are presenting some results of
the singularity analysis of the new parallel manipulator with six
degrees of freedom. This manipulator comprises two platforms
connected by six legs, each of which consists of two links, one
revolute and two spherical joints. Such structure gives the
manipulator six degrees of freedom, and all revolute joints
placed on the fixed platform are actuated. Thus, each leg has
one actuator. We have derived the differential kinematic
relations between two vectors: mobile-platform velocity and the
active-joint rates. These relations comprise two matrices, the
forward - and the inverse - kinematics Jacobians. The analytical
approach to the research of these relations, based only on linear
algebra, has yielded interesting results on identification of the
singular configurations of the parallel manipulator.

Index Terms — Jacobian matrix, mobile platform, parallel
manipulator, singularity analysis.

I. INTRODUCTION

A parallel manipulator, also called the platform
manipulator, is the closed-loop mechanism in which the
moving platform with an operation point is connected to the
base by at least two serial kinematic chains. It is well known
that such manipulators possess inherent advantages of higher
stiffness, higher payload capacity, and lower inertia to the
manipulation problem than comparable serial manipulators.
However, the closed-loop nature of parallel manipulators
limits the motion of the platform and creates complex
kinematic singularities. An important limitation of a parallel
manipulator is that singular configurations may exist within
its workspace where the manipulator gains one or more
degrees of freedom and completely loses its stiffness [1], [2].

One of the first works devoted configuration singularities
of general closed-loop mechanisms belongs to Gosselin and
Angeles [3]. In this work, configuration singularities were
classified into three main types, based on the properties of the
Jacobian matrices of the mechanism. These matrices define
the differential kinematic relations between the vectors
mobile-platform velocity x (vector of output velocities) and
the active-joint rates q (vector of input generalized

velocities) as follows:

Ax =Bq (1)
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where A and B are the Jacobian matrices. Depending on
which of the matrix is singular, the singularities of a parallel
manipulator can be classified into the three types. The first
type of singularity occurs when matrix B is singular (det
B=0), and in a corresponding configuration a manipulator
loses 1 or more degrees of freedom. The second type of
singularity occurs when matrix A is singular (det A=0), and a
manipulator gains 1 or more degrees of freedom. And at last,
the third type of singularity is possible when matrices A and
B are simultaneously singular. Tsai [2] has noted that matrix
A is associated with the direct kinematics and matrix B is
associated with the inverse kinematics. He determined the
above mentioned types of singularities as inverse, forward,
and combined singularities, respectively.

Thus, the singularity analysis of parallel manipulators
requires the Jacobian analysis that is a much more difficult
problem than the same analysis of serial manipulators. It is
connected to the fact that these manipulators consist of many
links, which form a number of closed loops. Different
approaches to the singularity analysis of the manipulators
based on Grassmann geometry, the screws theory and a
machinery of Clifford algebra, etc. have been proposed
[4]-[10]. In works [11], [12] the concept of screw reciprocity
for the Jacobian analysis of parallel manipulators is
presented.

The above mentioned advantages of the parallel
manipulators became motivation for development of the new
six-legged parallel manipulator (PM) with six degree of
freedom (DOF), based on an RSS structure [13], [14]. This
paper is devoted to the singularity analysis of this PM. The
procedure of the formation of the differential kinematic
relations (1) is described. The analytical approach of the
singularity analysis based only on linear algebra is proposed
and some results for identification of the first and second
types of singularities of this PM with 6 DOF are presented.

II. GEOMETRY OF THE PM WITH 6 DOF

The six-legged PM with 6 DOF contains a moving
platform 3, connected with the fixed base 0 by six legs of
RSS kind, where R - a revolute joint, S - a spherical joint
(Fig. 1). The first joint in each leg is an active one, i.e. all
revolute joints at points O; (i=1, 2, ... 6) are active, and all
spherical joints are passive. This PM is intended for
reproduction of movement of a moving platform or the local
coordinates system (the frame) Pxpypzp attached to it, with
respect to the base frame OXYZ
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Xp=Xp(q@), ¥, =Y,(q(0), Zp = ZP(Q(t))} 2

7e =7p@0), ap=ap(q@®), Br=Br(q())

Fig. 1. Six-legged PM with 6 DOF

where q()=[6,(1), O(1),..., O1)]" - a vector of the input
generalized coordinates; x(t)= [Xp, Yp, Zp, 1p, Qp, ,Bp]T -a
vector of the output coordinates (the position of the mobile
platform); y», ap and fp - the components of relative
orientation of coordinates systems Pxpypzp and OXYZ.

In the description of this manipulator in work [14] the rules
of the choice of six parameters proposed by Sheth and Uicker
[15] for the definition of a positional relationship of two
frames are used. Three of these parameters a,,b,,c,
correspond to linear shifts, and other three parameters
Qs Byis7 ji» correspond to angular deviations of k-th frame

with respect to j-th frame. Corresponding 4x4 transformation
matrix T; which has been used to describe the geometry of
separate links and to derive the symbolical formula of the
parallel manipulator as a whole is obtained. Thus orientation
of k-th frame with respect to j-th frame is determined by 3%3
orthogonal rotation submatrix R of matrix Tj as follows:

ij = R(ajksﬁjkayjk) =
Y B =SV k€SB =CY uSPy =SV uCOUCPy Y Sy

=| Y By + ¥y Py ¥ aCu Py =Sy usPu —<rysay |, (3)
sayspy, saucpy, cay
where ca, =cosa, sa, =sina,, and so on. Relative

linear shift between these two frames can be determined by
following 3x1 submatrix T

J _ _
Ty = T(a_;ksb_;kscjksajksﬁ;ks%/k) =
aucy i +bjks7/jksajk
=| apsy —bjkcyjksajk .

Ci Hbycay

“4)

The identical architecture of each leg of the PM allows us
to show all its geometrical parameters with respect to
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arbitrary i-th leg, i.e. with respect to kinematic chain
0O0;A;B;P (Fig. 2). Other five legs are not illustrated in Fig.2

to make the manipulator sketch simpler.

Fig. 2. Geometry of the i-th leg of the PM

The following parameters are given: [, , = f; [, =g,
i=1,2,.,6 - lengths of mobile links; /., =h, ¢, ,
i=1,2,..,6 -polar coordinates of spherical kinematic pairs B;
with respect to local frame Pxpypzp; a,;, by ;,Co i, @i BoisVois
i=1,2,...,6 -the parameters defining a local frame O,x,y,z,
attached to active joints O,, with respect to base frame OXYZ;
values of constant angles y; defining deviations of links O4;
from a direction of an rotation axis of i-th active joint.

Let the positional relationship of local frame Pxpypzp with
respect to base frame OXYZ be defined by a set of parameters

AypsbypsCopsQypsPopsVop » and the vector g, = 4B, be

defined by the spatial polar coordinates {gi, 6’;, 6’,}

III. GENERATION OF JACOBIAN MATRICES

The loop-closure equation for each of legs of the PM, i.e.
for kinematic chain OO;A4;B;PO, can be written as

r,=r, +f,+g,-h,, i=12,..,6, 5)

where

I'p :[XpaYp,Zp]T =° Tp = (6)
= T(aO,P’bO,P’CO,P’aO,P’ﬁO,P’70,P):

fo =X, %o 201 =" %= G
=7(ag;, b, %055 Po,i>70,i)»

fi = OiAiZORiifi s giZORi[gi s hi = ﬁ’:oRPPhi 5 (8)

ORi = R(ao‘i’ﬂo,n%,i) > ORP = R(aO‘P9ﬂ0‘P’}/O‘P) > )]
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sy,c6), cdc(6,+6) co,
ifi = fi| swis6 |, igi =& CQS(@I 'Hg,) > Phi =h|so, |. (10)
cy, 56, 0
Differentiating (5) with respect to time, we obtain
i, =0, xf +® xg, —0,xh,, i=12 .6 (11)

where 1, :[XP,YP,ZP]T :[SPX,Spy,SPZ ]T - a vector of a
velocity of point P; 0, =6, -e, or ‘0, =6, " e, - vectors of
angular velocity of the active joints with respect to base or
local frame O,x,y,z,, respectively, and e, or ‘e, = [O,O,I]T -
corresponding unit vectors indicating the direction of the
rotation axis O,z; of the i-th active joint; ®, - an angular
velocity of i-th passive link 4;8;; @, = [a)PX,a)PY , Op, ]T -a
vector of an angular velocity of a mobile platform.
Dot-multiplying both sides of (11) by g;, leads to

g t,=0,-(fxg)-0, (hxg),i=12 .,6. (12)

Equation (12) can be presented in the matrix form like (1) by
using the following denotation: x = [i‘;,mﬁ]r - a vector

mobile-platform velocity, q = [91,92,...,5’6]I - a vector of the

active-joint velocities. Thus both Jacobian matrices A and B
have dimensions 6x6, and are defined as follows

ng (h, x gl)T

A=A(xq) = g; (h2><g2)T ’ (13)

g{, (hg x g(,)T

B =B(x,q) =

= diag[elT -(f, xg)), eg -(f, xgz),...,eg -(f; xgé)]. (14)

Elements a; and b, of matrices A and B are defined by

means of constant geometrical and variable kinematics
parameters of PM by the following equations, respectively

a4, =8,y =8 =
= ¢, kc0e(0, +0)(crocy, ~ srucanspy) -
—cO/(0, + )Py + Vot cPy) + 505750t )
an =8 "€y =8y =
=g {CQC(Q + 9[')(370[0180[ + c7ofca0fsﬂ0i) +
+ CHIS(HI + g[l)(c}/()ica()icﬂ()i - SinSﬂOi) - SGL'HC)/O[SO[OI' }’
a;=8,°€¢,=4,=4; {c‘gglc(‘gi + ‘9;)Sa0isﬂ0i) -
- cgins(gi + Q)SQOfCﬂOi - Sez'"cao;' }’

(15)

a, =M, xg)-e,=ny=hyg,—h,gy,
as=(h;xg)-e, =ny =h,gy—hyg,,
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a=(h;xg)-e,=n, =hygy—hygy, (16)
b, :eiT (f,xg,)=f,-g siny, 005'9:'" sin H;’
b,.j:O, fori=j, i=12,.,6; j=12,..,6, (17)

where e, e,, e, - unit vectors indicating the direction of

axes OX, OY, and OZ, respectively, and components of a
vector h; are defined by the equations

hy =h; {(W’oPcﬂop —SYopCpSPop) COSP, —

—(€YopSQyp +870pC0y pCPyp) SIN G, }’

by = h; {(SVOPCIBOP +CYopClopsPyp) COSP; +
+(CYopCQopCPyp = 870pSPop) SN G }» ’

hy =h; {Saopsﬂop COS P, +5&pCfp SIN (Pi} .

(16)

IV. SINGULARITY ANALYSIS OF THE PM WITH 6 DOF

A. The first type of singularity

This type of singularities occurs, when the determinant of
matrix B vanishes. According to (17), in such configurations
at least one of diagonal elements of this matrix is equal to
zero, i.e. we get thatdet B =0, if:

1°. 6 =+7/2,ie. g, || Oz
2°. 6, =0or 7, ie. (4B) N Oz, 2D

(18)
(19)

Thus, the first type of singularities of a configuration can take
place whenever the passive link A4,B,, the actuated link O:4;,

i
and the axis of rotation Oz, of the active joint are located in
one plane o;, as shown in Fig. 3. Moreover, since the solution
of the inverse kinematics problem leads to two branches of
solutions per leg (a spherical surface of radius g; and centered
in point B; and a circumference of radius f; -siny, and with

the center in a point O, on axis Ogz,;, in general can be

intersected in two points) when the prescribed platform
coordinates are located inside the workspace, or to no real
solution (the indicated sphere and the circumference have no
cross points) when platform coordinates are outside the
workspace. Hence, the boundary of workspace is determined

Fig. 3. The first type of singularity of the PM

WCE 2010



Proceedings of the World Congress on Engineering 2010 Vol 11
WCE 2010, June 30 - July 2, 2010, London, U.K.

by the set of points for which the inverse kinematics problem
gives only one solution (a sphere and a circumference adjoin
to each other in one point and have a common tangent), that is
equivalent to the conditions (18), (19). In other words, this
kind of singularity consists of the set of points where there
are different branches of the inverse kinematics solutions,
where the inverse kinematics problem is understood here as
the computation of the values of the input coordinates at a
given values of the output coordinates of the PM.

Since in this type of a configuration i-th leg and the axis of
i-th actuated revolute joint are located in one plane o, the set
of mobile-platform velocities that correspond to a velocity of
an attachment point of i-th leg to this platform along passive
link A4;B;, cannot be reproduced. This set of the
mobile-platform velocities is determined by the set of
rotations of the platform about an arbitrary line of a plane
containing the i-th attachment point of a platform and
orthogonal to the link 4,B;. Moreover, any force applied to
the mobile-platform along plane o;, and also a couple of
forces applied at this platform parallel to the same plane o,
will not affect the actuator. This is so because the moments of
these loadings (force and a couple of forces) about a rotation
axis of i-th active-joint are equal to zero.

B. The second type of singularity

The second type of singularity is associated with
degeneration of matrix A, i.e. such singularity occurs when
the determinant of A vanishes. This type of singularity lies
within the workspace of the PM and corresponds to a point or
a set of points where different branches of the direct
kinematics problem meet. In the direct kinematics problem,
the values of the output variables from given values of the
input variables should be obtained. For this type of
configuration there exist nonzero mobile-platform
velocities x , which are mapped into the zero vector by matrix
A. These velocities of the platform are possible even when
the actuated joints are locked. We shall write matrix A in the
following form

g]X le g]Z an nlY an

A= gZ.X g?y g%z nZ.X nZ‘Y nz.z ’ (20)

8ox Bov 8oz Mox Moy Moz

where elements of first three columns are components of
vectors g, , and elements of last three columns are

components of vectors n, =h; x g, , that is

T
g =8> &> &z] »
n,=h,xg =[n,,n,,n,,i=1,2,..,6.

The analysis of the structure of matrix A leads to
reviewing the question whether linear dependences between
lines or columns of matrix A generating the second type of
singularities are possible? Both parts of this question are
interdependent and it would be more reasonable to review a
linear dependence of columns of matrix A that leads to
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required results faster. However, in the greater degree we are
wondered under what conditions the linear dependence of
line vectors of matrix A is possible, since components of each
i-th line vector of matrix A consists of coordinates of two
different and orthogonal vectors g;, n, .

Let's assume that matrix A degenerates because of a linear
dependence of its two arbitrary lines with numbers j and £. It
means that numbers A, and A, exist, which simultaneously are
not equal to zero and for which the following formula is fair

Alg;.ni1 + Algn ] =0, j#k @n
whence
[(ﬂ'lgj + /Izgk)Ts (ﬂqn_/ + /Iznk)T]T =0, J#* k. (22)
These conditions should satisfy the corresponding
configuration
A g |4
+Ag =0,>g. =—"2g 2L |21y 23
g+ g N (23)
n.
Aqnj+/12nk:0,:>nj:—ﬁnk,:>—’:ﬁ:y. (24)
1 neo |4

The analysis of conditions (23) and (24) shows that
equality to a zero vector of one of vectors n; and n,

excludes a linear dependence of corresponding lines of
matrix A. Indeed, let us assume that n; = 0,n, #0.Then we
receive that 4, =0 from (24). But since g; cannot be zero,

we also obtain A, =0 from (23). L.e. numbers A, and A, are
equal to zero simultaneously, hence, the considered lines
cannot be linearly dependent.

Further we shall assume that n ;70 =0 Then,
according to conditions (23) and (24) it should be (g ; [/ g, )
identical coefficient of

and (n;|[n,) , and with

proportionalityz. The specified requirements also mean the
fulfillment of the following conditions

(25)
(26)

g Ng =n Nn,
g, g, = n,1Tn,.

Achieving a parallelism of vectors g; and g, is possible,
therefore we admit that (g, || g,) and the condition (23) is

satisfied. We shall check up whether a parallelism of the
vectors n; and n, is possible under the condition of (24).

As (n; |n,) = (h; xg )| (h, xg,), the following two

cases are possible:
Case 1°. Let's assume that (h; [[hy) is possible. Obviously,

it is one of necessary conditions of linear dependence of
considered lines and it means that vectors n; and n, lay in

planes Q; and O, , which are perpendicular to vectors

WCE 2010



Proceedings of the World Congress on Engineering 2010 Vol 11
WCE 2010, June 30 - July 2, 2010, London, U.K.

Fig. 3. Spatial layouts of vectors of j-th and &-th lines of a
Jacobian A ina case when n; #0, n; #0,and h; || h;

h; and hy, respectively (Fig. 3). It is evident that O, [| O, .
On the other hand, according to (24)

J
n, h g, -sinQ,

>

should be carried out, whence on the base of (23) and
sinQ); =sin €, , we obtain

h=h,

J

i.e. pole P should be in the middle of BB, . But at such
layout of the pole P, conditions (25) and (26) are not
satisfied. Indeed, from Fig. 3 we can see that n, N,
follows from g, ™ g, . And also it is simple to be convinced
Thus, the

considered case does not lead to linear dependence of vectors
lines of matrix A and singularity of a configuration of the
PM.

that N corresponds to n, Tt n, .
g; g p ; X

Case 2°. We shall consider a case when the vectors h j and

h; are not parallel. Using an invariance of the (1) with
respect to the choice of coordinates systems, we admit that
vectors with which we operate are determined with respect to
the base coordinates system instantly combined with local
coordinates system Pxpypzp by the following components

h; =[h

hy, 017, by =[hy, Ry, 01,

Jx> Ty

8 =18 &ir &1 > 8k =[8hs &ty &ic1 >
nj =(hj ng)= [hjygjz’ _hjxgjza h]xgjy _hjygjx]T

n,=(h, xg,)= [hkygkzv = 8 hkxgky _hkygkx]T .

Further, from (n; |[n,)= (n;xn,)=0, by using (28) and
(29), we obtain
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27)

(28)

(29)

hjxgjz (hkxgkx - hkygkx) + hkxgkz (hjxgjy - hjygjx) = Oa
h/ivgjz (i — hkygkx) + hkygl(z (hjxgjy - hjygjx) =0,
gjzgkz (hjxhky - hjyhkx) = 0’

(30)

where, in relation to expressions in parentheses, it is possible
to establish the following

hk\' hky
(M &1 _hkyg/cr): #0, (3D
g
kx ky
as vectors h; and g, are not parallel;
(g, -y, =| 20 (32)
JxXS gy Yo Jx gjx gjy
as vectors h ; and g are not parallel;
h, h,
(hjxhky _hjyhkx) = | # O: (33)
h, h,

as vectors h ; and h; are not parallel.

Taking into consideration (31) - (33), we obtain from (30)
the following

g.=0, g.=0, (34)

i.e. the vectors g, and g, or the passive links corresponding

to them should be located in a plane of mobile platform Pxpyp
(Fig.4). Substituting (34) in (28) and (29), we obtain

(35)
(36)

T
nj 2[03 Oa hjxgjy_hjygjx] s

n, =[0, 0, hkxgky_hkygloc]T:

Le. the vectors n; and n; should be parallel to axis Pzp.

Thus, (34) or (35) and (36) serve as a primary hint of
possible occurrence of the second type of singularity
configuration. L.e. they are taken as necessary conditions of
linear dependence of considered line vectors of matrix A but
they are not enough for degeneration of matrix A, and plus to
this it is also necessary to require satisfaction of the condition
(24)

i

ng - hk gk 'Sian a

j|_ _thJSIIlQJ_

Iny |

u, (37)

where Q= (hjjgj) Q, = (hkjgk) . Whence, given (23), we

obtain the following condition

h;-sinQ; = h, -sinQ,, (38)

i.e. projections of line segments PB; and PB; (modules of
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£,
4, \D,rk
F

Fig. 4. Layouts of j-th and k-th passive links of PM in a plane
of a mobile platform

orthogonal projections of the vectors h; and h, ) on a
direction which perpendicular to vectors g, and g, , should
be equal. However, we do not know, how vectors g, and g,

are directed. We only know that they are parallel and lay in
one plane with pole P of a platform according to (34). That’s
why at first we determine those directions where the
considered line segments have equal projections. It is
possible to show that such directions are perpendicular to
diagonals of the parallelogram constructed on vectors h;

and h, . It is necessary consideration of different variants of
a placement of vectors g, and g, determined by directions

of these diagonals (Fig. 4): along a straight line (B8;B,) and in
parallel to a straight line (PDjy). However, the analysis shows
that only four variants of a layout of passive links along a
straight line (B;B)) satisfy conditions (25), (26), one of which
is shown in Fig. 4a. Examples of a layout of the same links
which do not generate singularity configuration are shown on
Fig. 4b, c.

Let's note that consideration of a case when both vectors

n; and n; are simultaneously equal to zero brings to the

same results.

V. CONCLUSION

As parallel manipulators are constructed on the basis of the
closed kinematic chains, they become more complex and
exhibit a much broader range of kinematic behavior than
serial manipulators on open chains. Therefore the
understanding of parallel manipulator singularities is needed
in order to avoid possible undesirable consequences. In this
paper the singularity analysis of the new six-legged parallel
manipulator with six DOF has been considered. It was shown
that the first type of singularities occur whenever the passive
link, the actuated link, and the rotation axis of the active joint
have a layout in one plane for any of legs. Physical
interpretation of this singularity configuration of the
manipulator is given. Also one of the conditions of
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occurrence of the second type of singularity configuration of
this parallel manipulator is established on the basis of
consideration of degeneracy of direct-kinematics Jacobian
matrix in consequence of linear dependence of its two
arbitrary lines. According to this condition the passive
parallel manipulator links corresponding to two linearly
dependent lines of a Jacobian matrix have a layout along a
direct line which passes through attachment points of these
links with a mobile platform. The obtained conditions of
configuration singularities can be expressed through
constants and variable parameters of the parallel manipulator
that is important for the control of such configurations. The
further publications of research results of the second type
singularity of the considered parallel manipulator because of
a linear dependence of three and more line vectors, and also
of the columns vectors of a direct-kinematics Jacobian matrix
are being planned.
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