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Abstract—Navigation based on visual memories is

very common among humans. However, planning

long trips requires also a more sophisticated represen-

tation of the environment, such as a topological map.

This paper describes a system that learns paths by

storing sequences of images and image information in

a Sparse Distributed Memory. Connections between

paths are detected by exploring similarities in the im-

ages, and a topological representation of the connec-

tions is created. The robot is then able to plan paths

and skip from one path to another at the connection

points. The system was tested under reconstitutions

of country and urban environments, and it was able

to successfully plan paths and navigate.
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1 Introduction

About 80 % of all the information humans rely on is vi-
sual [1], and the brain operates mostly with sequences of
images [2]. View sequence based navigation is also ex-
tremely attractive for autonomous robots, for the hard-
ware is very straightforward, and the approach is biolog-
ically plausible. However, while humans are able to nav-
igate quite well based only on visual information, images
usually require huge computer processing power. This
means that for real time robot operation, visual infor-
mation is often avoided. Other sensors, such as sonar
or laser range finders provide accurate information at a
much lower computational cost.

The goal of equipping robots with cameras and vision-
based navigation is still an open research issue. The use
of special landmarks (possibly artificial, such as barcodes
or data matrices), is a trick that can greatly improve the
accuracy of the system [3]. As for the images, there are
two popular approaches: one that uses plain images [4],
the other that uses panoramic images [5]. Panoramic
images offer a 360° view, which is richer than a plain
front or rear view. However, this richness comes at the
cost of even additional processing power requirements.
Some authors have also proposed techniques to speed up
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processing and/or reduce memory needs. Matsumoto [6]
uses images as small as 32x32 pixels. Ishiguro [7] replaced
the images by their Fourier transforms. Winters [8] com-
presses the images using Principal Component Analysis.

The images alone are a means for instantaneous locali-
sation. View-based navigation is almost always based on
the same idea: during a learning stage the robot learns a
sequence of views and motor commands that, if followed
with minimum drift, will lead it to a target location. By
following the sequence of commands, possibly correcting
the small drifts that may occur, the robot is later able
to follow the learnt path. This idea is very simple and it
works for single paths. However, for more complex trips,
path planning is necessary. To plan paths, skipping from
one to another when necessary, more sophisticated rep-
resentations of the environment are required. Namely,
metric or topological maps can be used [9]. Those maps
represent paths and connections between them, making
it possible to use algorithms such as A* for intelligent
navigation.

This paper explains how view-based navigation is
achieved using a Sparse Distributed Memory (SDM) to
store sequences of images. The memory is also used to
recognise overlaps of the paths and thus establish con-
nection nodes where the robot can skip from one path
to another. This way, a topological representation of the
world can be constructed, and the system can plan paths.
Section 2 explains navigation based on view sequences in
more detail. Section 3 explains how the SDM works. In
Section 4 the robot used is described. Section 5 describes
the navigation algorithm, and Section 6 shows and dis-
cusses the results obtained.

2 Navigation using view sequences

Usually, the view-based approaches for robot navigation
are based on the concept of a “view-sequence” and a look-
up table of motor commands. In the present work, the
approach is very close to that of Matsumoto et al. [6].
This approach requires a learning stage, during which
the robot must be manually guided. While being guided,
the robot memorises a sequence of views automatically.
While autonomously running, the robot performs auto-
matic image based localisation and obstacle detection,
taking action in real-time.
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Figure 1: One model of a SDM, using bit counters.

Localisation is estimated based on the similarity of two
views: one stored during the learning stage and another
grabbed in real-time. The robot tries to find matching
areas between those two images, and calculates the hor-
izontal distance between them in order to infer how far
it is from the correct path. That distance is then used
to correct eventual drifts to the left or to the right. This
technique is described in more detail in [10].

3 Sparse Distributed Memories

The Sparse Distributed Memory is an associative mem-
ory model proposed by Kanerva in the 1980s [2]. It is
suitable to work with high dimensional binary vectors.
In this case, an image can be regarded as a high dimen-
sional vector, and the SDM can be used simultaneously
as a sophisticated storage and retrieval mechanism and a
pattern recognition tool.

3.1 The original model

The underlying idea behind the SDM is the mapping of a
huge binary memory onto a smaller set of physical loca-
tions, called hard locations. As a general guideline, those
hard locations should be uniformely distributed in the
virtual space, to mimic the existence of the larger virtual
space as accurately as possible. Every datum is stored
by distribution to a set of hard locations, and retrieved
by averaging those locations and comparing the result to
a given threshold. Figure 1 shows a model of a SDM.
“Address” is the reference address where the datum is to
be stored or read from. It will activate all the hard lo-
cations within a given access radius, which is predefined.
Kanerva proposes that the Hamming distance, that is the
number of bits in which two binary vectors are different,
be used as the measure of distance between the addresses.
All the locations that differ less than a predefined number
of bits from the input address are selected for the read or
write operation.

Data are stored in arrays of counters, one counter for
every bit of every location. Writing is done by incre-
menting or decrementing the bit counters at the selected
addresses. To store 0 at a given position, the correspond-
ing counter is decremented. To store 1, it is incremented.
Reading is done by averaging the values of all the coun-

Figure 2: Alternative architecture of the SDM, auto-
associative and using integers.

ters columnwise and thresholding at a predefined value.
If the value of the sum is below the threshold, the bit is
zero, otherwise it is one.

Initially, all the bit counters must be set to zero, for the
memory stores no data. The bits of the address locations
should be set randomly, so that the addresses would be
uniformely distributed in the addressing space. There’s
no guarantee that the data retrieved is exactly the same
that was written. It should be, providing that the hard
locations are correctly distributed over the binary space
and the memory has not reached saturation.

3.2 The model used

The original SDM model, though theoretically sound and
attractive, has some faults. One problem is that of select-
ing the hard locations at random in the beginning of the
operation. Another problem is that of using bit counters,
which cause a very low storage rate of about 0.1 bits per
bit of traditional computer memory and slow down the
system. These problems have been thoroughly described
in [11], where the authors study alternative architectures
and methods of encoding the data.

To overcome the problem of placing hard locations in the
address space, in this work the hard locations are selected
using the Randomised Reallocation algorithm [12]. The
idea is that the system starts with an empty memory and
allocates new hard locations when there’s a new datum
which cannot be stored in enough existing locations. The
new locations are placed randomly in the neighbourhood
of the new datum address. To overcome the problem of
using bit counters, the bits are grouped as integers, as
shown in Figure 2. Addressing is done using an arith-
metic distance, instead of the Hamming distance. Learn-
ing is achieved updating each byte value using the equa-
tion:

hk

t = hk

t−1
+ α · (xk − hk

t−1
), α ∈ R ∧ 0 ≤ α ≤ 1 (1)

hk
t

is the kth number of the hard location, at time t. xk

is the corresponding number in the input vector x. α is
the learning rate—in this case it was set to 1, enforcing
one shot learning.
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Figure 3: Robot used.

Figure 4: Architecture of the implemented software.

4 Experimental Platform

The robot used was a Surveyor1 SRV-1, a small robot
with tank-style treads and differential drive via two pre-
cision DC gearmotors (Figure 3). Among other features,
it has a built in digital video camera and a 802.15.4 ra-
dio communication module. This robot was controlled in
real time from a laptop with a 1.8 GHz processor and 1
Gb RAM. The overall software architecture is as shown
in Figure 4. It contains three basic modules:

1. The SDM, where the information is stored.

2. The Focus (following Kanerva’s terminology), where
the navigation algorithms are run.

3. An operational layer, responsible for interfacing the
hardware and some tasks such as motor control, col-
lision avoidance and image equalisation.

Navigation is based on vision, and has two modes: su-
pervised learning, in which the robot is manually guided
and captures images to store for future reference; and au-
tonomous running, in which it uses previous knowledge
to navigate autonomously, following any sequence previ-
ously learnt. The vectors stored in the SDM consist of
arrays of bytes, as summarised in Equation 2:

xi =< imi, seq id, i, timestamp, motion > (2)

1http://www.surveyor.com.

In the vector, imi is the image i, in PGM (Portable Gray
Map) format and 80×64 resolution. In PGM images, ev-
ery pixel is represented by an 8-bit integer. 0 is black,
255 is white. seq id is an auto-incremented, 4-byte inte-
ger, unique for each sequence. It is used to identify which
sequence the vector belongs to. i is an auto-incremented,
4-byte integer, unique for every vector in the sequence,
used to quickly identify every image in the sequence.
timestamp is a 4-byte integer, storing Unix timestamp. It
is not being used so far for navigation purposes. motion

is a single character, identifying the type of movement
the robot performed after the image was grabbed.

The image alone uses 5120 bytes. The overhead infor-
mation comprises 13 additional bytes. Hence, the input
vector contains 5133 bytes.

5 Mapping and planning

The “teach and follow” approach per si is very simple and
powerful. But for robust navigation and route planning,
it is necessary to extend the basic algorithm to perform
tasks such as detection of connection points between the
paths learnt and disambiguation when there are similar
images or divergent paths.

5.1 Filtering out unnecessary images

During learning in vision-based navigation, not every sin-
gle picture has to be stored. There are scenarios, such
as corridors, in which the views are very similar for a
long period of time. Those images do not provide data
useful for navigation. Therefore, they can be filtered
out during the learning stage, so that only images which
are sufficiently different from their predecessors must be
stored. This behaviour can be easily implemented using
the SDM: every new image is only stored if there is no
image within a predefined radius in the SDM. If the error
is below a given threshold, the new image is discarded.
A good threshold for this purpose is the memory activa-
tion radius. New images that are less than an activation
radius from an already stored image will be stored in the
same hard locations. They are most probably unneces-
sary.

5.2 Detecting connection points

Another situation in which new images don’t provide use-
ful information is the case when two paths have a common
segment, such as depicted in Figure 5. The figure shows
two different paths, 1 and 2, in which the segment AB
is common. If the robot learns segment AB for path 1,
for example, then it does not need to learn it again for
segment 2. When learning path number 2, it only needs
to learn it until point A. Then it can store an association
between paths 1 and 2 at point A and skip all the images
until point B. At point B, it should again record a connec-
tion between paths 1 and 2. This way, it builds a map of
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Figure 5: Example of paths that have a common segment.
The robot only needs to learn AB once.

the connection points between the known paths. This is
a kind of topological representation of the environment.

The main problem with this approach is to detect the con-
nection points. The points where the paths come together
(point A in Figure 5) can be detected after a reasonable
number of images of path 1 have been retrieved, when the
robot is learning path 2. When that happens, the robot
stores the connection in its working memory and stops
learning path 2. From that point onwards, it keeps mon-
itoring if it is following the same path that it has learnt.
After a reasonable number of predictions have failed, it
adds another connection point to the graph and resumes
learning the new path. In the tests with the SDM, a
number of 3–5 consecutive images within the access ra-
dius usually sufficed to establish a connection point, and
3–5 images out of the access radius was a good indicator
that the paths were diverging again.

5.3 Sequence Disambiguation

One problem that arises when using navigation based
on sequences is that of sequence disambiguation. Un-
der normal circumstances, it is possible the occurrence of
sequences such as 1) ABC; 2) XBZ; or 3) DEFEG, each
letter representing a random input vector. There are two
different problems with these three sequences: 1) and 2)
both share one common element (B); and one element
(E) occurs in two different positions of sequence 3). In
the first case, the successor of B can be either C or Z.
In the second case, the successor of E can be either F or
G. The correct prediction depends on the history of the
system. One possible solution relies on using a kind of
short term memory.

Kanerva proposes a solution in which the input to the
SDM is not the last input Dt, but the juxtaposition of the
last k inputs {Dt, Dt−1...Dt−k}. This technique is called
folding, and k is the number of folds. The disadvantage
is that it greatly increases the dimensionality of the input
vector. J. Bose [13] uses an additional neural network, to
store a measure of the context, instead of adding folds to

the memory.

In the present work, it seemed more appropriate a solu-
tion inspired by Jaeckel and Karlsson’s proposal of seg-
menting the addressing space [14]. Jaeckel and Karls-
son propose to fix a certain number of coordinates when
addressing, thus reducing the number of hard locations
that can be selected. In the present work, the goal is
to retrieve an image just within the sequence that is be-
ing followed. Hence, this idea can be applied here. The
number of the sequence can be fixed, thus truncating the
addressing space.

6 Tests and Results

For practical constraints, the tests were performed in a
small testbed in the laboratory. This testbed consisted of
an arena surrounded by a realistic countryside scenario,
or filled with objects simulating a urban environment.

6.1 Tests in an open arena simulating a
country environment

The first test performed consisted in analysing the be-
haviour of the navigation algorithm in the open arena.
The surrounding wall was printed with a composition of
images of mountain views, as shown in Figure 8. The
field of view of the camera is relatively narrow (about
40°), so the robot cannot capture above or beyond the
wall. Sometimes it can capture parts of the floor.

Figure 6 shows an example of the results obtained. In
the example, the robot was first taught paths L1 and L2.
Then the memory was loaded with both sequences, estab-
lishing connection points A and B. The minimum overlap-
ping images required for establishing a connection point
was set to 3 consecutive images. The minimum number
of different images necessary for splitting the paths at
point B was also set to 3 consecutive images out of the
access radius. The lines in Figure 6 were drawn by a pen
attached to the rear of the robot. Therefore, they repre-
sent the motion of the rear, not the centre of the robot,
causing the arcs that appear when the robot changes di-
rection. As the picture shows, the robot was able to start
at the beginning of sequence L1 and finish at the end of
sequence L2, and vice-versa. Regardless of its starting
point, at point A it always defaulted to the only known
path L1. This explains the small arc that appears at
point A in path F2. This arc represents an adjustment
of the heading when the robot defaulted to path L1.

The direction the robot takes at point B depends on its
goal. If the goal is to follow path L1, it continues along
that path. If the goal is to follow path L2, it will dis-
ambiguate the predictions to retrieve only images from
path L2. This behaviour explains the changes in direc-
tion that appear in the red line (F1) at point B. The arcs
were drawn when the robot started at path L1, but with
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Figure 6: Results: paths taught and followed. The robot successfully skips from one path to another and node points
A and B.

the goal of reaching the end of path L2.

6.2 Tests in a simulated urban environment

In a second experiment, the scenario was filled with im-
ages mimicking a typical city environment. Urban en-
vironments change very often. Ideally, the robot should
learn one path in a urban environment but still be able to
follow it in case there are small changes, up to an accept-
able level. For example, Figure 7 shows two pictures of a
traffic turn, taken only a few seconds one after the other.
Although the remaining scenario holds, one picture cap-
tures only the back of a car in background. The other
picture captures a side view of another car in foreground.

Due to the small dimensions of the robot, it was not
tested in a real city environment, but in a reconstruc-
tion of it. Figure 8 shows the results. Figure 8(a) shows
the first scenario, where the robot was taught. In this
scenario the robot, during segment AB, is guided essen-
tially by the image of the traffic turn without the car. In
a second part of this experiment the picture of the traffic
turn was replaced by the one with the car in foreground,
and the robot was made to follow the same paths. Again,
it had to start at path L1 and finish at path L2, and vice-
versa. As Figure 8(b) shows, it was able to successfully
complete the tasks.

7 Conclusions and future work

Navigation based on view sequences is still an open re-
search question. In this paper, a novel method was pro-
posed that can provide view-based navigation based on
a SDM. During a learning stage, the robot learns new
paths. Connection points are established when two paths
come together or split. This way, a topological represen-
tation of the space is built, which confers on the robot
the ability to skip from one sequence to another and plan

(a)

(b)

Figure 7: Typical city view, where the traffic turn is tem-
porarily occluded by passing cars.
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(a) (b)

Figure 8: Paths learnt (blue and black) and followed, with small scenario changes. The robot plans correctly the
routes and is immune to small changes in the reconstituted urban scenario.

new paths. One drawback of this approach is that the
SDM model, simulated in software as in this case, re-
quires a lot of processing and is very slow to operate in
real time. Another disadvantage is that using front views
the robot only merges paths that come together in the
same heading.

The results shown prove the feasibility of the approach.
The robot was tested in two different environments, one
that is a reconstitution of a country environment, the
other a reconstitution of a changing urban environment.
It was able to complete the tasks, even under changing
conditions.

References

[1] Steven Johnson. Mind wide open. Scribner, New
York, 2004.

[2] Pentti Kanerva. Sparse Distributed Memory. MIT
Press, Cambridge, 1988.

[3] Christopher Rasmussen and Gregory D. Hager.
Robot navigation using image sequences. In In Proc.
AAAI, pages 938–943, 1996.

[4] Yoshio Matsumoto, Kazunori Ikeda, Masayuki In-
aba, and Hirochika Inoue. Exploration and map ac-
quisition for view-based navigation in corridor envi-
ronment. In Proc. of the Int. Conference on Field
and Service Robotics, pages 341–346, 1999.

[5] Yoshio Matsumoto, Masayuki Inaba, and Hirochika
Inoue. View-based navigation using an omniview se-
quence in a corridor environment. In Machine Vision
and Applications, 2003.

[6] Yoshio Matsumoto, Masayuki Inaba, and Hirochika
Inoue. View-based approach to robot navigation. In
Proc. of 2000 IEEE/RSJ Int. Conference on Intelli-
gent Robots and Systems (IROS 2000), 2000.

[7] Hiroshi Ishiguro and Saburo Tsuji. Image-based
memory of environment. In in Proc. IEEE/RSJ Int.
Conf. Intelligent Robots and Systems, 1996.
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