
 
    Abstract. Methods of drawing up of mathematical model of 
spatial movement of the three-mass oscillating system - an 
analogy of the vibratory technological machine, are given. 
Differential equations are interconnected non-linearly and 
technological process can be controlled with their help 
depending on dynamical and kinematical parameters of the 
whole system. 
    Some results of the numerical experiment are given, indicating 
dependence of speed of vibratory transportation on separate 
spatial vibrations of the vibratory machine working member. 
 
    Keywords: differential equations, model of the friable 
material, spatial vibrations, vibratory technologic machine, 
speed of vibratory displacement.  
 

I. INTRODUCTION 
 

    Rise of non-working spatial vibrations in vibratory 
technologic machines, disturbing their normal operating 
conditions is often observed. In this connection a problem 
of elaboration of spatial dynamical and corresponding 
mathematical models of these machines with the purpose 
of study of influence of non-working (parasitic) spatial 
vibrations on the proceeding technologic process, arises. 
     Interconnected equations enable us to determine 
influence of separate, as well as of combinations of various 
vibrations on behavior of the technologic load. In the 
result, correlations of the system parameters can be 
revealed, favoring improvement of quality and quantity of 
the produce being processed.   
                    

II. SYSTEM DESCRIPTION 
 

     A vibratory technologic machine can be considered as a 
three-mass oscillating system consisting of the elements: 
active mass M1 (working member); reactive mass M2 

(vibroexciter); material M3 being processed or transported 
(Fig.1; 2). 
     The main distinction between the system in 
consideration  and classical  n-mass spatial system 
contains the following aspects: a) specificity of 
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technologic mass M3 (friable, lump and other materials)  
performing relative movement with respect to working 
member M1; thereat masses M1 and M2 perform  
independent movement  under action of the external force  
and mass M3 – under action of mass M1;  b) specified  
initial disposition of masses  M1, M2 and M3 relative to 
each other (such a condition makes the generally used 
succession of drawing up  of mathematical  model of the 
system movement, asymmetric); c) peculiarity  of 
interaction of masses  M1 and M3, as connected with each 
other by conditional non-permanent elastic link existing 
only in the time of their contact. 
    To facilitate deduction of equations we represent a 
vibratory machine (Fig. 1) in the classical form of 
three-mass oscillating system (Fig. 2), taking into account 
above mentioned distinctive features. 
     For obtaining of general vector and then analytical 
expressions of kinetic energy we determine absolute speed 
of any material point of each masses Ai, Bi, Ci.  They are 
related vectorially  (Rj, Rji, rji) with the origins of their own 
coordinate axes, as well as with the origin of inertial 
coordinate system (O );  besides M3 is related  with the 
centroid  (origin of the coordinate system Oixiyizi ) of mass 
M1. 
Vector expressions of speeds of points Ai, Bi and Ci have 
the form 
 

    11 1 iAi O OV V r  
   

 

   22 2 iCi O OV V r  
   

                            (1) 

   3 31 1 3 3i iBi O O O OV V R V r      
      

  
 
         

                        
Fig. 1. Model of the vibratory transport  

technological machine 
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Fig. 2. Three-mass oscillating system - analogue of the 

vibratory transport technological machine 
       
     Correspondingly, expressions of kinetic energy of 
masses will be 
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where j=1,2,3;  M1i, M2i, M3i are masses of particles  Ai, Bi, 
Ci;  n1, n2, n3 –number of corresponding particles. Rotary 
movements of masses M1, M2, M3 will be described by 
directing cosines of Euler ship angles [4] (thereby small 
changes of Euler angles are ensured at small deflections of 
masses), considering angles of inclination of the working 
member vibrating surface () and exciting force (). 

To obtain an analytical expression of spatial 
movement of the mentioned interconnected oscillating 
system, it is necessary to determine coordinates of 
centroides of masses, points of fastening of elastic 
elements to the masses and to reduce them to one specified 
coordinate system. Since technologic load     

 
 
 
 

 
 

 (M3) is connected directly and interacts with working 
member (M1) it is expedient to choose O1x1y1z1 as such a 
system. 

Projections of coordinates of points are defined with 
the help of angular coefficients according to Table 1, 
where directing cosines of angles between axes of 

coordinate systems   O1 x1 y1 z1 and '
1

'
1

'
1

'
1 zyxO   are given. 

Expressions of coordinates of fastening of point A of the 
basic elastic system 1 (Fig. 2) in coordinate system   
O1x1y1z1, after dynamical displacement of masses, are 
shown here as an example 

1

1

1 1 11 1 12 1 13

1 1 21 1 22 1 23

;

;...;

A O A A A

A O A A A A

x x x y z

y y x y z z

  

  

   

   
, 

where 111 ,,
11 OOO zyx  are coordinates of point O1 (after 

displacement); 1 1 1, ,A A Ax y z  - coordinates of point A; 

332311 ,...,,...,   directing cosines of angles between 

axes of coordinate systems O1x1y1z1 and '
1

'
1

'
1

'
1 zyxO , i.e. 

between initial and dynamical positions of mass M1 (Fig.2; 
Table 1). 

For illustration we give here analytical expression of 
kinetic energy of mass M1: 
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where 111 ,, zyx JJJ   are moments of inertia of mass M1 

relative to axes of system O1x1y1z1. 
Expansion of kinetic energy of mass M3 has more 

complicated form; since it performs relative movement 
with respect to moving mass M1 (we did not consider it 
necessary to give this expression here). 

 
 

 
 

 Table 1.Directing cosines of angles between initial and dynamical positions of mass M1 
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    To include technologic load (mass M3) in common 
spatial system (Fig. 2) and to give it a generalized 
character, we represent it formally as a rigid body, 
connected with working member (M1) by conventional 
elastic system 3, describing elastic features of friable 
material.  

At fixed moment of time elastic system 3 (as well as 1 
and 2; Fig. 1; 2) is decomposed into three components 
describing elastic features of material in space. 

Peculiarity of elastic system 3 is in non-permanent 
character of its link with the working member (WM). 
Interaction between layers of material and between lower 
layer and WM are described with the help of elastic and 
damping elements. In contrast to existent models [1,2]  the 
offered model considers all the degrees of freedom, i.e. it 
can be included in the model of general spatial system 
(Fig. 1; 2) and, depending on concrete tasks, it can be  
reduced to simpler forms (plane, linear). 

Representation of TL by the rigid body (at drawing up 
of expression for kinetic energy) is stipulated by  necessity 
to obtain an equation of movement of TL in more 
generalized form – not only for reciprocating (in this case 
TL would have been considered as a material point), but 
also for rotary movements. 
      Deformation of a layer of the friable TL is simulated 
by elastic elements with coefficients of elasticity  kx3, ky3, 
kz3, , (Fig. 3).  

     Dissipation of energy at deformation of a layer is 
considered by dampers with coefficients of resistance  

3,xc 3,yc 3,zc 3,c 3,c  3c  (not shown in the Figure). 

Therefore, direct contact between TL and WM is replaced 
by elastic and frictional links. In determining of potential 
forces of elastic systems of WM and TL, depending on the 
value of displacement, two approaches can be used. In one 
case (at small displacements) components of  the  elastic  
force  along  the  coordinate  axes  are  determined  
according  to potential energy and Lagrange equation. In 
another case according to determined elastic force its 
components on the coordinate axes are found directly. 
Sizes of conventional elastic system 3 can be determined 
as a guide, depending on location of TL relative to surfaces 
of the concrete WM. 

For deduction of equations of spatial movement of 
three –mass oscillating system (Fig.1; 2), Lagrange 
equation of the second kind is used in the following form 
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Fig. 3. Spatial model of the friable technological load                                         

where T is a sum of kinetic energies of masses M1, M2, M3 
drawn up by analogy of equation (3) for each mass;  q – 
generalized coordinate adopting magnitudes  x1, y1, z1,…., 

y3, z3, 1, 1, 1,….,3, 3 ;   
'
qQ - potential (elastic) forces 

and moments, stipulated by the machine elastic system; Qq 
– forces, not related with deformation of an elastic system 
or with inertness of the oscillating system in consideration: 
external (exciting) forces; forces of gravity, forces of 
resistance of the kind of external friction (friction force 
between TL and WM). 

On the basis of adopted assumptions about smallness 
of rotary displacements products of variables no higher 
than second order are considered in the equations.  

In view of the fact that out of interconnected masses, 
interaction of M1 and M3 is more peculiar and M3 can be of 
various internal structure, we give equations of movement 
of these masses only along coordinate axis   x (methods of 
deduction of equations of movement of all the masses 
along other coordinate axes are similar and we do not give 
them here). 

For mass M1: 
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For mass M3: 
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where   f, f* are functions of coordinates and speeds and 
their products; 1 = +;   Q(t) -exciting force of the 
vibro-exciter; “sign” – non-linear function depending on 

sign of speeds :,, 3
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zyx 0,  Nz – reaction of TL relative 

to WM. 
Equations (5) and (6) and the rest, not given here 

describe movement of the three-mass system (Fig. 1; 2) 
and they are interconnected by non-linear items of 
potential and inertial character. As for the form of link, 
they are similar for both systems. The difference is in 
presence of the   sum of masses M1 and M3 in equations (5), 
while only one mass M3 is in equations (6). Character of 
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vibratory displacement of one body relative to another is 
determined by such form of interconnection.       

It should be noted, that equations (5) and (6) describe 
movement of mass M3 relative to M1 at constant 
interconnection (at constant contact), and potential field in 
the form of Qq (in the right-hand part) is an elastic and 
damping characteristic  of mass M3 (in the case of friable 
material) and depending on its position, Qq (and 

coefficients ** , qq ck ) can vary. Besides, dynamical 

dependence between M1 and M3 can be uneven and 
conditions of throwing up of material (M3) from the 
vibrating surface (M1) are added to systems (5) and (6) in 
this case.  

  Some results of solution of equations (5) and (6) are 
given in Figures 4 and 5; namely, dependences of speeds 
of movement of the material Vx and Vy on variation of the 
amplitude of the WM rotary vibrations  and    are shown 
(resonances were provoked in these directions). From 
these dependences is seen that speed varies significantly in 
the zone of resonance that indicates possibility of use of 
given factor for the purpose of intensification of the 
vibratory technologic process. 
 

 
 

Fig. 4. Dependence of speed of movement of the  
material Vx on variation of the amplitude  

of the WM rotary vibrations  
                                                                              

 
 

Fig. 5. Dependences of speeds of movement of the 
material Vx and Vy on variation of the amplitude  

of the WM rotary vibrations  
 

III. CONCLUSIONS  
 

Dynamical and corresponding mathematical models 
of three-mass oscillating system – an analogy of vibratory 
technologic machine are drawn up with the use of theory 
of relative movement. Methods of drawing up of equations 
of spatial movement of the vibro-machine working 
member and technological load of generalized form are 
offered.  Influence of non-working spatial vibrations of the 
WM and other parameters of the vibro-machine on 
technologic process can be studied with the help of 
proposed mathematical model.  

This will enable us to increase degree of their 
purposeful application relying upon the fact that 
combination of certain spatial vibrations and working 
vibrations increases intensity of the technologic process. 

In future researches will be continued and 
constructions using combinations of working vibrations 
and certain spatial vibrations, ensuring improvement of the 
technologic process (For example, rise of speed of 
vibratory displacement) will be elaborated. 
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