
 
 

 

 
Abstract— In current work, a composite rotating disk under 

internal and external pressure subjected to temperature 
distribution is analyzed. The modified Tsai-Wu FC is used in 
this study. It has been shown that FC is strongly depends on 
temperature distribution. Polynomial function is selected for 
thermal distribution. For a limited range of the temperature the 
coefficient of the polynomial has a great effect on failure 
criterion. In a case study, the best coefficient of the function is 
derived somehow to make the failure criterion as uniform as 
possible. 

Index Terms— Rotating disk; Temperature distribution; 
Failure criterion; Thermoplastic composite. 
 

I. INTRODUCTION 

  Composite materials are implemented where high stress 
and low weight are required. Rotating disk has many 
applications in industry. Using composite material in rotating 
disk leads to increase of the specific strength. There have 
been some studies dealing with thermal stresses in the basic 
structural components of FGMs. Kolakowski [1] has 
presented a modification of the Tsai-Wu criterion, needed in 
the case of the multi-criterion optimal design of thin-walled 
composite structure and a proposal of the evaluation of the 
load carrying capacity of multi-layered composites with 
respect to their failure mode. Asghari and Ghafoori [2] have 
presented a semi-analytical three-dimensional elasticity 
solution for rotating functionally graded disks. Their solution 
includes the responses of both of the hollow and solid disks 
and is a generalization of the two-dimensional plane-stress 
solution. Vivio and Vullo [3,4], have introduced an analytical 
procedure for evaluation of elastic stresses and strains in 
rotating conical disks and in non-linear variable thickness 
rotating disks, either solid or annular, subjected to thermal 
load, and having a fictitious density variation along the 
radius. Hasan Çallioglu [5] has examined the stress analysis 
on orthotropic rotating annular disks subjected to various 
temperature distributions, such as uniform, linearly 
increasing and decreasing with radius temperatures. Hosseini 
Kordkheili and Naghdabadi [6] have presented a 
semi-analytical thermoelasticity solution for hollow and solid 
rotating axisymmetric disks made of functionally graded 
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materials and investigated on the effects of the radial 
gradation of constitutive components on stress, strain and 
displacement components of the functionally graded disk for 
both centrifugal force and uniform thermal loadings. Bayat 
[7] have studied a rotating functionally graded disk with 
variable thickness under a steady temperature field [8] and 
have also conducted Elastic solutions for axis-symmetric 
rotating disks made of functionally graded material with 
variable thickness.  
In this study analytical thermo elastic solution is developed to 
find stress distribution and numerical procedure is used to 
increase uniformity in the rotating disk. A polynomial 
function has been chosen for temperature distribution and 
through numerical experiments the optimum ratio of 
polynomial coefficients are achieved. 

 
Fig. 1. Pressurized rotating disk under thermal loading 

II. FORMULATION OF THE PROBLEM 

For the plane stress problem, the constitutive Equations in 
polar coordinate system is given as  
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In which Er, σr, ɛr and α1 are respectively modulus of 
elasticity, stress, strain and thermal coefficient in radial 
direction and Eθ ,σθ, ɛθ and α2 are respectively modulus of 
elasticity, stress, strain and thermal coefficient in tangential 
direction. vrθ and vθr are Poisson’s ratios for orthotropic 
materials. T is temperature distribution. As, all the loads 
including thermal, body force and pressure inside as well as 
outside are function of radius only, the problem can be 
considered as axis-symmetric problem which means there is 
no variation in circumferential direction. 

Strain-displacement relations in axis-symmetric polar 
coordinate can be written as follows   
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In which u is displacement in radial direction. γrθ is shear 
strain that is equal zero in axiymmetric problems. Therefore, 
according to the above equation, the compatibility equation 
becomes 
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Equilibrium equation in polar coordinate for plane stress in 
r direction is 
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In which ω is angular velocity of disk. One may write Eq. 
(1) and (2) as following 




 



EE

T r
r

r
r 

1
1

                                                                (8) 





 




EE
T r

r

r 1
2                                                                  (9) 

Solving Eq. (8) and (9) for σr and σθ gives 
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Substituting Eq. (10) and (11) into Equation (7) gives 
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Substituting   ɛr and ɛθ from Eq. (4) and (5) into Eq. (12) 
gives 
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where 
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Eq. (14) is an ordinary differential equation in form of Euler 
equation. Homogenous part of the solution is 
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In order to find particular solution a temperature function 
should be assumed. Second and third term of cubic 
polynomial function is selected because it gives more variety 
of thermal distribution 
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By substituting Eq. (20) into Eq. (4) and (5), one may reach 
strain components as following 
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Substituting Eq. (22) and (23) in Eq. (10) gives stress 
components which σr and σθ as 
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From Fig. 1 one can find B0 and B1 from the following 
boundary conditions 
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Using modified Tsai-Wu failure criterion (FC) from [1], 
the criterion for failure in an orthotropic material in 
axiysemmtric problem is derived as follows 
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where 
LT= Longitudinal Tension  
LC= Longitudinal Compression  
TT= Transverse Tension  
TC= Transverse Compression  
In choosing q1 and q2 for temperature function, there is 
limitation to meet 1)( f  

 

III. Results and discussion 

A thermoplastic composite material is made of Nylon 6 as 
resin containing 45wt% carbon fiber and its mechanical 
properties are given in Table 1. 

 
Table1. Mechanical properties of the thermoplastic material 

Radial elasticity modulus (MPa) Er 20000 

Tangential elasticity modulus (MPa) Eθ 12000 

Shear modulus (MPa) Grθ 8000 

Poisson’s ratio vrθ 0.35 

Radial thermal expansion coefficients 
(1/0C) 

α1 9 ×10-6 

Tangential  thermal expansion 
coefficients (1/0C) 

α2 
114 

×10-6 

Longitudinal Tension (MPa) LT 1034 

Longitudinal Compression (MPa) LC 689 

Transverse Tension (MPa) TT 411 

Longitudinal Compression (MPa) TC 117 

 
The internal and external pressures are 6 Mpa and 8Mpa, 

respectively. ω is 100 rad/s and inner and outer radius of the 
disk are 0.15 m and 0.2 m, respectively.  In Fig. 1 and 2 the 
FC is plotted versus ratio of temperature coefficient and 
radial distance, it shows that the minimum amount of FC 
occurs when the ratio of temperature distribution coefficients 
is around 0.8. 

 
Fig. 2. FC versus radial distance and temperature coefficients ratio; 3D 

view of the figure. 
With the q2/q1=0.8, the radial stress and tangential stress are 
shown in Fig. 3 and 4, respectively.  
 

 
Fig. 3. Radial stress versus radial distance 

 
Fig. 4. Tangential stress versus radial distance 

Fig.3 and 4 show that the critical region is at the outer side 
of the rotating disk. At the end, the FC is depicted versus of 
temperature coefficient (q1, q2). It is obvious that in some 
region the FC can be minimized. The critical situation 
happens when one of the temperature coefficient i.e. q1 or q2 
is zero. The feasible region can be chosen for temperature 
coefficients so that the FC is smaller than one. 
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Fig. 5. The feasible region for temperature coefficients versus FC at critical 

radius  

 
Therefore, q1 and q2 have significant effect on both the 
maximum FC as well as its distribution in the rotating disk.  
An efficient design for rotating disk is somehow that all 
material at any point fail uniformly so that all material are 
used before failure which causes less wasting of material. A 
numerical study has been done to obtain FC for different 
ratio=q1/q2 .   
 
From Fig. 6 it is obvious the optimum value of ratio is around 
one which can maximize the uniformity of the FC along the 
radial distance. 

IV. CONCLUSION 

An orthotropic rotating disk under internal and external 
pressure and thermal loading was analyzed in order to obtain 
efficient temperature distribution. It was shown that if only 
one term for temperature distribution is used, the possibility 
of failure in disk increases. Using two terms in temperature 

distribution function, decrease the amount of the FC. If the 
two coefficients are equal then the distribution of the FC is 
more uniform. More terms for temperature polynomial 
function can be used in this analysis. Optimization procedure 
can be done in order to find the coefficient of these extra 
terms. 
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Fig. 6. FC versus radial distance for three values of ratio. 
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