
 
 

 

  
Abstract—In this paper, finite element analysis of residual 

thermal stresses in fiber-reinforced composites has been carried 
out. For a more realistic simulation of the microstructure of 
these materials subjected to different loadings, a representative 
volume element (RVE) may be used. In this paper, three 
different types of RVE configurations, circular, square and 
hexagonal are modeled and the effects of each type of fiber 
packing are studied. A mono fiber circular unit cell is 
considered using Finite Element (FE) method. Extending the 
mono fiber model, FE models with different arrays of fibers 
have been created to investigate the effects of neighboring fibers 
on the results. The results obtained are used to introduce new 
boundary conditions for the mono fiber model to make it able to 
predict the macro behavior in an efficient way. In all steps, the 
results are also compared with theoretical results presented in 
the literature. The boundary conditions presented in this 
research are proved to model the overall behavior efficiently. 
 

Index Terms— fibrous composite material, finite element, 
representative volume element, inhomogeneous interphase, 
boundary conditions. 
 

I. INTRODUCTION 
  Composite materials are becoming an essential part of 

present engineered materials because they offer advantages 
such as higher specific stiffness and strength, better fatigue 
strength and improved corrosion resistance compared to 
conventional materials. These high performance composites 
consist of different constituents. Subjected to thermal or 
thermo-mechanical loads, different deformations occur in 
different constituents leading to large differences of 
deformations and stresses between these constituents, which 
are known as residual deformations and stresses. However, 
the use of composite materials is limited by the lack of 
efficient tools to predict their degradation and lifetime under 
service loads, environment and the process induced residual 
stresses. For a more realistic simulation of the microstructure 
of these materials subjected to mechanical, thermal or  
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thermo-mechanical loadings, a representative volume 

element (RVE) may be used. In the investigations applying 
FE method, one common procedure is the numerical 
generation of a RVE or a unit cell (UC) of the material being 
studied. A RVE or a UC is a statistical representation of the 
material [1]. Two major groups of these models are the 
composite cylinder models (CCM) [2] in which the RVE 
consist of two or more concentric cylinders and unit cell 
models (UCM) [3]-[5]. Because of its ability in reproducing 
the real stress and strain evolution, the simulation through a 
RVE may provide the understanding of the composite 
thermal behavior. This understanding is a need for the 
proposal of macroscopical results. In the analysis of the 
microstructure, the periodicity hypothesis of the fiber within 
the composite has been traditionally employed. This 
hypothesis reduces the analysis of the microstructure to the 
analysis of a single unit cell (the simpler RVE) and may lead 
to analytical solutions [6]. Three representative volume 
elements (Fig. 1) based on the 3-D elasticity theory have been 
proposed in (Liu and Chen, 2002) for the study of fiber 
reinforced composites. They are the cylindrical RVE (Fig. 
1(a)), square RVE (Fig. 1(b)) and hexagonal RVE (Fig. 1(c)). 
The cylindrical RVE can be applied to model the models 
including different diameters (Hyer, 1998). Under 
axisymmetric as well as antisymmetric loading, a 2-D 
axisymmetric model can be applied for the cylindrical RVE, 
which can significantly reduce the computational work (Liu 
and Chen, 2002). The square RVE models can be applied 
when the conventional fiber-reinforced composites are 
arranged evenly in a square array, while the hexagonal RVE 
models can be applied when they are in a hexagonal array, in 
the transverse direction. These RVEs can be used to study the 
interactions with the matrix, such as the load transfer 
mechanism and stress distributions along the interfaces (Liu 
and Chen, 2002) or to evaluate the effective material 
properties of the composites [7]. 

 

 
Fig. 1 three representative volume elements [7] 
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Although these unit cells can be useful for some purposes 

and can be employed successfully in two-scale methods to 
reproduce macroscopical behavior [8, 9], they do not reflect 
the reality of composite materials, in which the fiber is 
randomly distributed or it is placed among many other 
neighboring fibers, and consequently, they are not usable to 
simulate some of the complex mechanisms which take place 
in long fiber reinforced polymers and which may cause 
microscopic failure [10]. The selection of appropriate 
boundary conditions has been a challenge for many 
researchers. Since the RVEs must be modeled in a way that 
results obtained can efficiently describe the overall the 
composite material behavior, these boundary conditions have 
an important role in modeling the effect of the neighboring 
fibers, which are not considered in a mono fiber RVE cell. 
Many researchers have used micromechanical method to 
provide overall behavior of the composites from known 
properties of their constituents (fiber and matrix) through an 
analysis of a periodic representative volume element (RVE) 
or a unit-cell model [11,12]. In the macro-mechanical 
approach, on the other hand, the heterogeneous structure of 
the composite is replaced by a homogeneous medium with 
anisotropic properties. The advantage of the 
micromechanical approach is not only the global properties 
of the composites but also various mechanisms such as 
damage initiation and propagation, can be studied through 
the analysis [13, 14]. In the previous works, square and 
hexagonal arrays for RVEs have been studied extensively, 
but RVEs with curved boundaries, such as circular, have not 
been studied very much. 

In this paper, a new unit cell finite element model has been 
presented to investigate fiber-reinforced composites 
subjected to thermal loading. An inhomogeneous interphase 
region has been assumed in the model. A mono fiber circular 
unit cell model is presented and then the model is generalized 
to include different geometrical configurations, such as a 
square unit cell, square cell arrays and hexagonal arrays. In 
order to present a mono fiber model which is efficiently able 
to model the macro thermal behavior of a fibrous composite 
material, the mono fiber model is extended and FE models 
with different arrays of fibers are created to investigate the 
effects of neighboring fibers on the results. The results 
obtained in these models are used to introduce new boundary 
conditions in the mono fiber model to make it able to predict 
the macro behavior in an efficient way. In all steps, the results 
are also compared with theoretical results available in the 
literature. The boundary conditions selected in the present 
work are proved to model the overall behavior of the mono 
fiber model efficiently. 

 

II. FINITE ELEMENT MODELING 
In this paper, a circular RVE, containing a fiber, interphase 

region and surrounding matrix, is presented and considered 
in the FE model. In order to reduce the FE problem size and 
the runtime, one fourth of the circular model is considered 
here. The interphase region is taken to be inhomogeneous. If 
the material properties of the interphase keep unchanged, the 
interphase is called homogeneous. Otherwise, it is called 

inhomogeneous. In the inhomogeneous interphase 
considered in this research, the mechanical properties of this 
region undergo an exponential variation with the radial 
coordinate. The mathematical representation of this property 
variation can be written as [15]: 
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where 

),,,,,( 1312 TLTL EEt αανν=  
which it represents the transverse and longitudinal Young’s 
moduli ET and EL, Poisson’s ratios ν12 and ν13, and thermal 
expansion coefficients in the transverse and longitudinal 
directions αT and αL, respectively. Also, r is the radial 
distance from the fiber center and rf and ri are the fiber and 
interphase outer radii. 

To apply the property variation above to the FE model, the 
interphase region is assumed to consist of some layers and the 
material properties are kept constant in each layer. To 
calculate the properties of each layer, a simple mathematical 
code is used to generate the properties as a function of the 
radial coordinate. The average value of two neighboring 
radial distances is calculated and taken to be the property 
value for the layer. 

The Young’s moduli, Poisson’s ratios and thermal 
expansion coefficients of the fiber are taken to be ET=364.49 
GPa, EL=488.45 GPa, ν12=0.2508, ν13=0.2, αT=6.25e-6/°C 
and αL=5.9e-6/°C. And those of the matrix are set to Em=200 
GPa, νm=0.3, and αm=12.5e-6/°C. The outer radii of the fiber, 
interphase and matrix are taken as 5, 6 and 10 μm, 
respectively. The externally applied thermal load is a uniform 
temperature drop of -500 °C. ABAQUS 6.7-1 FE package 
has been used for modeling. Fig. 2 shows the circular mono 
fiber model used in this research. 

    
(a)                                       (b) 

Fig. 2 a) One fourth mono fiber circular RVE model. b) finite 
element mesh 

 

     In order to investigate the neighboring effects on stress 
and displacement results around the fiber and interphase, 
extended RVEs are modeled. These models are the mono 
fiber square RVE (Fig. 3), multi fiber 2x2 square array RVE 
(Fig. 4), multi fiber 3x3 square array RVE (Fig. 5), multi 
fiber 4x4 square array RVE (Fig. 6) and multi fiber 5x5 
square array RVE (Fig. 7).  
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(a)                                      (b) 

Fig. 3 a) One fourth mono fiber square RVE model. b) finite 
element mesh 

     
(a)                                          (b) 

Fig. 4 a) multi fiber 2x2 square array RVE model. b) finite 
element mesh 

  
(a)                                   (b) 

Fig. 5 a) multi fiber 3x3 square array RVE model. b) finite 
element mesh 

 
(a)                                      (b) 

Fig. 6 a) multi fiber 4x4 square array RVE model. b) finite 
element mesh 

     
(a)                                           (b) 

Fig. 7 a) multi fiber 5x5 square array RVE model. b) finite 
element mesh 

 

     As the third configuration possible, hexagonal packing of 
fibers in the matrix is modeled, too. Unlike the circular and 
square configuration, the simplest hexagonal RVE contains 2 
fibers (see Fig.8). To investigate the effect of neighboring 
fibers and the convergence study of the results, an extended 
hexagonal unit cell (Fig.9) and a hexagonal array (Fig.10) are 
modeled. 

 

(a)                                          (b)  
Fig. 8 a) hexagonal unit cell. b) finite element mesh 

 
(a)                                       (b) 

Fig. 9 a) extended hexagonal unit cell. b) finite element mesh 
 

  
(a)                                  (b) 

Fig. 10 a) hexagonal array. b) finite element mesh 
 

     These extended RVEs can help us have a better and more 
realistic understanding of overall macroscopic behavior of 
composites subjected to thermal loadings. The results of the 
extended models are compared with the results obtained from 
the mono fiber circular RVE to investigate the effect of 
neighboring fibers existence on its stress and displacement 
results and these results are used to select appropriate 
boundary conditions for the mono fiber model to make it able 
to predict the macro behavior of the fibrous composite 
material efficiently. Such a model can be used to represent all 
the fibers in the composite material. 
     Considering different theoretical models available [14,15] 
and based on a repetitive procedure, a new boundary 
condition is obtained and introduced in which generalized 
plane strain assumption (with a strain equal to 4.5624e-3) is 
made and also mechanical symmetry conditions are applied 
to the one fourth model of the circular RVE. 

 

III. RESULTS AND DISCUSSION 
The results of residual radial and circumferential and axial 
stresses and radial displacement around the interphase region 
are presented in this section. 
 

COMPARISON OF RESULTS OF MONO FIBER 
CIRCULAR AND SQUARE AND HEXAGONAL 

MODELS 
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In Figs 11, 12, 13 and 14, the results of residual radial and 
circumferential and axial stresses and radial displacement 
around the interphase region are compared for the mono fiber 
square and circular and hexagonal models. (See Fig. 2,3 and 
8) 
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Fig. 11 Comparison of residual radial stresses for mono fiber 

square and circular and hexagonal models 
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Fig. 12 Comparison of residual circumferential stresses for 
mono fiber square and circular and hexagonal models 
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Fig. 13 Comparison of residual axial stresses for mono fiber 

square and circular and hexagonal models 
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Fig. 14 Comparison of residual radial displacements for mono 

fiber square and circular and hexagonal models 
 
     As is shown, the results of residual axial stresses and 
radial displacements in all mono fiber models are quite 
similar. In the case of residual radial stresses, hexagonal unit 
cell shows less magnitude of these stresses and the residual 
radial stresses in square model are more than the other two 
models. In the interphase region, the results of hexagonal unit 
cell and the circular model are very close to each other. In the 
case of residual circumferential stresses in the fiber, the 
results of the square and hexagonal unit cell and in the 
matrix, the results of the circular and square models are very 
close. In all the regions, the circular model shows higher level 
of these stresses and in the interphase the results of all models 
are similar.  
 
CONVERGENCE OF RESULTS FOR DIFFERENT FE 

ARRAYS 
In Figs 15 to 22, the results of residual radial and 

circumferential and axial stresses and radial displacement 
around the interphase region are compared for the different 
square and hexagonal array FE models. (See Figs 4, 5, 6, 7, 9 
and 10). As is shown, increasing the number of fibers in the 
model and creating a larger RVE, leads to more accurate 
results. Since the finite element mesh is chosen to be fine 
enough, the results converge very fast and increasing the 
number of fibers from 9 to 16 and 25 does not affect the 
results significantly. 
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Fig. 15 Convergence of residual radial stresses for different 

square arrays 
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Fig. 16 Convergence of residual circumferential stresses for 

different square arrays 

radius (mm)

0.000 0.002 0.004 0.006 0.008 0.010 0.012

re
si

du
al

 a
xi

al
 s

tre
ss

 (M
P

a)

-1000

-800

-600

-400

-200

0

200

400

2x2 FE array
3x3 FE array
4x4 FE array
5x5 FE array

 
Fig. 17 Convergence of residual axial stresses for different 

square arrays 
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Fig. 18 Convergence of residual radial displacements for 

different square arrays 

radius (mm)

0.0045 0.0050 0.0055 0.0060 0.0065 0.0070

re
si

du
al

 ra
di

al
 s

tre
ss

 (M
Pa

)

-400

-350

-300

-250

-200

-150

-100

FE (hexagonal unit cell)
FE (extended hexagonal unit cell)
FE (hexagonal array)

 
Fig. 19 Convergence of residual radial stresses for different 

hexagonal models 
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Fig. 20 Convergence of residual circumferential stresses for 

different hexagonal models 
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Fig. 21 Convergence of residual axial stresses for different 

hexagonal models 
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Fig. 22 Convergence of residual radial displacements for 

different hexagonal models 
 

COMPARISON OF RESULTS OF MONO AND MULTI 
FIBER FE MODELS AND A THEORETICAL MODEL 
     In Figs 23, 24, 25 and 26, the residual radial and 
circumferential and axial stresses and radial displacement 
results obtained from the mono fiber circular RVE model and 
the multi fiber 5x5 array model and the hexagonal array are 
compared with You’s [15] theoretical results. A good 
agreement is observed between the results, which proves that 
the presented mono fiber circular RVE model with the 
applied boundary conditions is capable of modeling the 
macro stress and displacement behavior of the composite 
material with an acceptable accuracy. 
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Fig. 23 Comparison of residual radial stresses for different 

models 
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Fig. 24 Comparison of residual circumferential stresses for 

different models 
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Fig. 25 Comparison of residual axial stresses for different 

models 
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Fig. 26 Comparison of residual radial displacements for 

different models 

IV. CONCLUSIONS 
Following an extensive study, appropriate boundary 
conditions are selected for the mono fiber unit cell model and 
the results of the unit cell model show good agreement with 
You’s theoretical model [15]. As the next step, multi-fiber 
square arrays of fibers, such as 2x2, 3x3, 4x4 and 5x5 arrays 
and also extended hexagonal arrays are modeled using FEM. 
Comparing the results of the mentioned arrays, a 
convergence is observed in the results. Also, the results of 
array modeling are compared with the theoretical results and 
a good agreement is observed between the results in this part. 
These comparisons offered the chance to investigate the 
behavior of each possible configuration of RVEs and fiber 
packing and its effect on the residual stress and displacement 
distribution around the interface region of the fiber and 
matrix, incorporating an inhomogeneous interphase. The 
results show that each configuration gives slightly different 
results in different analyses and regions and one single model 
cannot be chosen as the most appropriate and it was shown 
that all these models do not have very much different 
behavior.     
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