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Abstract—Many different problems in Engineering
and Computer Science can be modeled by a complex
system depending on a certain number n of stochas-
tic Boolean variables: the so-called complex stochas-
tic Boolean system (CSBS). The most useful graph-
ical representation of a CSBS is the intrinsic order
graph (IOG). This is a symmetric, self-dual diagram
on 2n nodes (denoted by In) that displays all the bi-
nary n-tuples in decreasing order of their occurrence
probabilities. In this paper, two different ways of par-
titioning the IOG –with applications to the analysis
of CSBSs– are presented. The first one is based on
the successive bisections of this graph into smaller
and smaller equal-sized subgraphs. The second one
consists of decomposing the graph In into totally or-
dered subsets (chains) of the set {0, 1}n of all binary
n-tuples.

Keywords: complex stochastic Boolean system, intrin-

sic order, intrinsic order graph, graph bisection, chain
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1 Introduction

This paper deals with the analysis of those complex
systems depending on an arbitrary number n of ran-
dom Boolean variables. That is, the n basic variables
x1, . . . , xn of the system are assumed to be stochastic,
and they only take two possible values, either 0 or 1,
with basic probabilities

Pr {xi = 1} = pi, Pr {xi = 0} = 1 − pi (1 ≤ i ≤ n) .

We call such a system a complex stochastic Boolean sys-
tem (CSBS). Each one of the 2n possible elementary
states associated to a CSBS is given by a binary n-tuple
u = (u1, . . . , un) ∈ {0, 1}n of 0s and 1s, and it has its own
occurrence probability Pr {(u1, . . . , un)}.
Throughout this paper we assume that the n Boolean
variables xi are statistically independent, so that the oc-
currence probability of a given binary string u of length
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n can be easily computed as

Pr {u} =
n∏

i=1

pui
i (1 − pi)

1−ui for all u ∈ {0, 1}n
, (1.1)

that is, Pr {u} is the product of factors pi if ui = 1, 1−pi

if ui = 0.

Example 1.1 Let n = 4 and u = (0, 1, 1, 0) ∈ {0, 1}4.
Suppose that p1 = 0.1, p2 = 0.2, p3 = 0.3, p4 = 0.4.
Then using (1.1), we have

Pr {(0, 1, 1, 0)} = (1 − p1) p2p3 (1 − p4) = 0.0324.

The behavior of a CSBS is determined by the ordering
between the current values of the 2n associated binary n-
tuple probabilities Pr {u}. Computing all these 2n prob-
abilities –using (1.1)– and ordering them in decreasing or
increasing order of their values is only possible in prac-
tice when the number n of basic variables is small. For
large values of n, we need alternative procedures to com-
pare the binary string probabilities. For this purpose,
in [3, 4] we have established a simple positional criterion
that allows one to compare two given elementary state
probabilities, Pr {u} ,Pr {v}, without computing them,
simply looking at the positions of the 0s and 1s in the n-
tuples u, v. We have called it the intrinsic order criterion
(IOC), because it is independent of the basic probabili-
ties pi and it is exclusively determined by the positions
of the 0s and 1s in the binary strings.

The intrinsic order relation on {0, 1}n can be graphically
illustrated through the intrinsic order graph (IOG). This
is a fractal, symmetric diagram that scales all the 2n bi-
nary n-tuples (associated to a CSBS with n basic vari-
ables) by decreasing order of their occurrence probabili-
ties.

In this context, the aim of this paper is to present dif-
ferent partitions of the IOG that provide us with some
significant information about the behavior of the CSBSs.

This paper has been organized as follows. In Section 2, we
present some background on the intrinsic order relation
and the IOG, in order to make this work self-contained.
Section 3 describes a recursive bisection procedure of the
IOG. Section 4 is devoted to decompose this graph into
totally ordered subsets (chains) of the set {0, 1}n of all bi-
nary n-tuples. Finally, in Section 5, some closing remarks
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describe the practical interest of the two different ways
of partitioning the IOG, presented in the two previous
sections.

2 Some Previous Results

Let us fix some basic concepts and notations, that we
shall use in the rest of the paper.

Definition 2.1 Let n ≥ 1 and let u = (u1, . . . , un) be a
binary n-tuple. Then

(i) We indistinctly denote the n-tuple u ∈ {0, 1}n by its
binary representation (u1, . . . , un) or by its decimal rep-
resentation u(10 , and we use the symbol “ ≡” to indicate
the conversion between these two numbering systems, i.e.,

(u1, . . . , un) ≡ u(10 =
n∑

i=1

2n−iui.

(ii) The Hamming weight (or simply weight) wH (u) of u
is the number of 1-bits in u, i.e., wH (u) =

∑n
i=1 ui.

(iii) Let u �= (0, . . . , 0), i.e., wH (u) = m > 0. The vector
of positions of 1s in u is the vector of positions of its m 1-
bits, with the convention that these positions are arranged
in increasing order from the right-most possible position
1 to the left-most possible position n. This vector will be
denoted by [i1, i2, . . . , im]n (1 ≤ i1 < i2 < · · · < im ≤ n).

(iv) Let 0 < m < n be arbitrary but fixed. The lex-
icographic order between the vectors of positions of 1s
of all n-tuples with the same weight m is the usual al-
phabetic order. That is, [i1, i2, . . . , im]n precedes (in the
lexicographic order) [j1, j2, . . . , jm]n iff the first index
p ∈ {1, 2, . . . ,m} for which ip �= jp, satisfies ip < jp.

(v) The complementary n-tuple uc of u is the n-tuple ob-
tained by changing all its 0s into 1s and vice versa, i.e.,

uc = (u1, . . . , un)c = (1 − u1, . . . , 1 − un) ,

(u1, . . . , un) + (u1, . . . , un)c = (1, . . . , 1) ≡ 2n − 1, (2.1)

i.e., to obtain (uc)(10 , just subtract u(10 from 2n − 1.

(vi) The complementary set Sc of a subset S ⊆ {0, 1}n

is the set of complementary n-tuples of all the n-tuples of
S, i.e.,

Sc = {uc | u ∈ S } .

Example 2.1 Let n = 5 and u = (0, 1, 1, 0, 1) ∈ {0, 1}5.

(i) (0, 1, 1, 0, 1) ≡ 20 + 22 + 23 = 13 = u(10 .

(ii) wH ((0, 1, 1, 0, 1)) = 3.

(iii) (0, 1, 1, 0, 1) = [i1, i2, i3]5 = [1, 3, 4]5 .

(iv) [1, 3, 4]5 precedes (lexicographically) [1, 3, 5]5 .

(v) 13c ≡ (0, 1, 1, 0, 1)c = (1, 0, 0, 1, 0) ≡ 18.

(vi) {4, 6, 10, 13}c = {27, 25, 21, 18} .

2.1 The Intrinsic Order

As mentioned in Section 1, in [3, 4] we have established a
quite simple criterion that allows us to compare two given
binary string probabilities, Pr {u} and Pr {v}, without
computing them. This criterion is rigorously established
by the following characterization theorem.

Theorem 2.1 (The intrinsic order theorem)
Let n ≥ 1. Let x1, . . . , xn be n pairwise statistically inde-
pendent stochastic Boolean variables, whose basic proba-
bilities pi = Pr {xi = 1} satisfy

0 < p1 ≤ p2 ≤ · · · ≤ pn ≤ 0.5. (2.2)

Then the occurrence probability of the binary n-tuple v,
i.e., v = (v1, . . . , vn) ∈ {0, 1}n, is intrinsically less than
or equal to the occurrence probability of the binary n-tuple
u, i.e., u = (u1, . . . , un) ∈ {0, 1}n, (that is, for all set
{pi}n

i=1 satisfying (2.2)) if and only if the matrix

Mu
v :=

(
u1 . . . un

v1 . . . vn

)

either has no
(
1
0

)
columns, or for each

(
1
0

)
column in Mu

v

there exists (at least) one corresponding preceding
(
0
1

)
col-

umn (IOC).

Remark 2.1 (i) In the following, we assume that the
probabilities pi always satisfy condition (2.2). Fortu-
nately, this hypothesis is not restrictive for practical ap-
plications. (ii) The

(
0
1

)
column preceding each

(
1
0

)
column

is not required to be necessarily placed at the immediately
previous position, but just at previous position. (iii) The
term corresponding, used in Theorem 2.1, has the follow-
ing meaning: for each two

(
1
0

)
columns in matrix Mu

v ,
there must exist (at least) two different

(
0
1

)
columns pre-

ceding each other.

The matrix condition IOC, stated by Theorem 2.1, is
called the intrinsic order criterion, because it is inde-
pendent of the basic probabilities pi and it intrinsically
depends on the relative positions of the 0s and 1s in the
binary n-tuples u, v to be compared. Theorem 2.1 natu-
rally leads to the following partial order relation on the
set {0, 1}n [3]. The so-called intrinsic order will be de-
noted by “	”, and we shall write v 	 u to indicate that
v is intrinsically less than or equal to u. Of course, u 
 v
means that u is intrinsically greater than or equal to v.

Definition 2.2 For all u, v ∈ {0, 1}n

v 	 u iff Pr {v} ≤ Pr {u} for all set {pi}n
i=1 s.t. (2.2)

iff Mu
v satisfies IOC.

From now on, the partially ordered set (poset, for short)
({0, 1}n

,	) will be denoted by In.
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2.2 The Intrinsic Order Graph

To finish this section, we present the graphical represen-
tation of the poset In. The usual representation of a poset
is its Hasse diagram (see, e.g., [9] for more details about
posets and Hasse diagrams). This is a directed graph (di-
graph, for short) whose vertices are the binary n-tuples
of 0s and 1s, and whose edges go downward from u to v
whenever u covers v (denoted by u�v), that is, whenever
u is intrinsically greater than v with no other elements
between them, i.e.,

u�v iff u � v and there is no w ∈ {0, 1}n s.t. u � w � v.

In [5], we have stated and demonstrated the following
simple matrix description of the covering relation associ-
ated to the intrinsic order.

Theorem 2.2 (Covering relation in In) Let n ≥ 1
and u, v ∈ {0, 1}n. Then u � v if and only if the only
columns of matrix Mu

v different from
(
0
0

)
and

(
1
1

)
are ei-

ther its last column
(
0
1

)
or just two columns, namely one(

1
0

)
column immediately preceded by one

(
0
1

)
column, i.e.,

either

Mu
v =

(
u1 . . . un−1 0
u1 . . . un−1 1

)
or (2.3)

Mu
v =

(
u1 . . . ui−2 0 1 ui+1 . . . un

u1 . . . ui−2 1 0 ui+1 . . . un

)
.

(2.4)

The Hasse diagram of the poset In will be also called the
IOG for n variables, denoted as well by In. The IOG
In has a downward path (edge, respectively) from u to
v if and only if u � v (u � v, respectively). For all
n ≥ 2, in [5] we have developed the following algorithm
for iteratively building up the digraph of In from the

digraph
0

|
1

of I1. Note that I1 has a downward edge from

0 to 1 because, clearly, 0 � 1, since matrix
(
0
1

)
has the

pattern (2.3)!

Theorem 2.3 (Building up In from I1) Let n > 1.
The graph of In = {0, . . . , 2n − 1} can be drawn simply
by adding to the graph of In−1 =

{
0, . . . , 2n−1 − 1

}
its

isomorphic copy 2n−1 + In−1 =
{
2n−1, . . . , 2n − 1

}
. This

addition must be performed placing the powers of 2 at
consecutive levels of the Hasse diagram of In. Finally,
the edges connecting one vertex u of In−1 with the other
vertex v of 2n−1+In−1 are given by the set of vertex pairs{
(u, v) ≡ (

u(10 , 2n−2 + u(10

) ∣∣ 2n−2 ≤ u(10 ≤ 2n−1 − 1
}

.

In Fig. 1, the IOGs for n = 1, 2, 3, 4 are shown from left
to right, using the decimal numbering for their 2n nodes.

0
|
1

0
|
1
|
2
|
3

0
|
1
|
2
| �

3 4
� |

5
|
6
|
7

0
|
1
|
2
| �

3 4
� | �

5 8
| � |
6 9
| � |
7 10

� | �

11 12
� |

13
|

14
|

15

Figure 1: The intrinsic order graphs for n = 1, 2, 3, 4.

The edgeless graph for a given graph is obtained by re-
moving all its edges, keeping all its nodes at the same
positions. In Fig. 2, the edgeless IOG for n = 5 is de-
picted.

0
1
2
3 4

5 8
6 9 16
7 10 17

11 12 18
13 19 20
14 21 24
15 22 25

23 26
27 28

29
30
31

Figure 2: The edgeless intrinsic order graph for n = 5.

For further theoretical properties and practical applica-
tions of the intrinsic order and the IOG, we refer the
reader to [2, 6, 7, 8].

3 Bisecting the Intrinsic Order Graph

A bisection of a graph is a partition of its vertex set
into two (disjoint) subsets with half the vertices each.
So, Theorem 2.3 suggests us a natural bisection of the
(edgeless) graph In into its two isomorphic (edgeless) sub-
graphs In−1 and 2n−1 + In−1.

Of course, this bisection process of the graph In can be
reiterated by successively partitioning each one of the ob-
tained subgraphs into its top and bottom halves. This
iterative bisection process finishes when we have par-
titioned In into 2n singleton subgraphs (with 1 vertex
each), i.e., into its 2n nodes. Moreover, this process
shows that the poset In has a “fractal structure”: the
whole graph has the same “shape” that each one of its two
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halves, and the same happens with each one of them, and
so on. In other words, the poset In has the self-similarity
property. Figs. 1 and 2 illustrate this fact.

Let us set an adequate notation for this iterative bisection
process. For all n ≥ 1, for all 1 ≤ k ≤ n, and for all k
fixed binary digits ū1, . . . , ūk ∈ {0, 1}, from now on we
denote by I ū1,...,ūk

n the subset of binary n-tuples whose
k first (or left-most) components are constant, namely
u1 = ū1, . . . , uk = ūk; while the n−k last (or right-most)
components, uk+1, . . . , un, take all possible values (0 or
1). More precisely, I ū1,...,ūk

n is the set{
(ū1, . . . , ūk, uk+1, . . . , un)

∣∣∣ (uk+1, . . . , un) ∈ {0, 1}n−k
}

≡
[
(ū1, . . . , ūk, 0, . . . , 0)(10 , (ū1, . . . , ūk, 1, . . . , 1)(10

]
(3.1)

and, obviously, the cardinality of this subposet is

∣∣I ū1,...,ūk
n

∣∣ =
∣∣∣{0, 1}n−k

∣∣∣ = 2n−k. (3.2)

Note that I ū1,...,ūk
n can be graphically obtained after k

successive bisections of In (1 ≤ k ≤ n) simply by chang-
ing, from right to left, the “0” and “1” bits of the vector
(ū1, . . . , ūk), by the words “first half” and “second half”,
respectively.

Example 3.1 For n = 5, k = 3 and for the upper indices
(ū1, ū2, ū3) = (1, 1, 0), using (3.1), we get the subgraph

I1,1,0
5 =

{
(1, 1, 0, u4, u5)

∣∣∣ (u4, u5) ∈ {0, 1}2
}

≡
[
(1, 1, 0, 0, 0)(10 , (1, 1, 0, 1, 1)(10

]
= [24, 27] = {24, 25, 26, 27}

and looking at Fig. 2, we confirm that the subposet
I1,1,0
5 = [24, 27] is exactly the first half (ū3 = 0) of the

second half (ū2 = 1) of the second half (ū1 = 1) of the
poset I5. Moreover, in accordance with (3.2), we see that
I1,1,0
5 has exactly 25−3 = 4 elements.

The most important property of the above bisection pro-
cedure of the IOG is stated by the following Theorem.

Theorem 3.1 Let n ≥ 1 and 1 ≤ k ≤ n. Bisect the edge-
less graph In into its 2k subgraphs I ū1,...,ūk

n (i.e., make
k successive bisections of In). Replace each subgraph
I ū1,...,ūk
n by an unique node labeled by its corresponding

vector of upper indices (ū1, . . . , ūk) and weighted by its
occurrence probability Pr {(ū1, . . . , ūk)}. Then the prob-
ability (weight) of each of these nodes (ū1, . . . , ūk) coin-
cides with the sum of the occurrence probabilities of all
the binary n-tuples u lying on the corresponding replaced
subgraph I ū1,...,ūk

n . Moreover, the Hasse diagram obtained
by sorting these 2k new nodes in decreasing order of their
weights is precisely the IOG Ik.

Proof. First, using (3.1), we get
∑

u∈I
ū1,...,ūk
n

Pr {u}

=
∑

(uk+1,...,un)∈{0,1}n−k

Pr {(ū1, . . . , ūk, uk+1, . . . , un)}

= Pr {(ū1, . . . , ūk)}
∑

v∈{0,1}n−k

Pr {v}

= Pr {(ū1, . . . , ūk)} .

Second, sorting the 2k vertices of the new con-
densed graph in decreasing order of their weights
Pr {(ū1, . . . , ūk)} is equivalent to ordering the 2k binary
k-tuples (ū1, . . . , ūk) ∈ {0, 1}k in decreasing order of their
occurrence probabilities. Thus, the new condensed graph
is, by definition, the IOG Ik. �

Example 3.2 Let n = 5 and k = 2. The 2k = 22 = 4
equal-sized subgraphs obtained after k = 2 successive
bisections of I5, are (see Fig. 2):

I0,0
5 = [0, 7] , I0,1

5 = [8, 15] , I1,0
5 = [16, 23] , I1,1

5 = [24, 31] .

Then the occurrence probability of each subgraph I ū1,ū2
5

(i.e., the sum of the occurrence probabilities of all the
eight nodes lying on it) coincides with the occurrence
probability of its corresponding binary 2-tuple (ū1, ū2).
Moreover, the four subgraphs I0,0

5 , I0,1
5 , I1,0

5 , I1,1
5 are re-

placed by their corresponding binary 2-tuples (upper in-
dices), (0, 0) ≡ 0, (0, 1) ≡ 1, (1, 0) ≡ 2, (1, 1) ≡ 3,
and displayed –in decreasing order of their occurrence
probabilities– on the digraph of I2 (the second one from
the left in Fig. 1.). So, k = 2 successive bisections of I5

lead to I2, following a “nice fractal behavior”.

4 Chains in the Intrinsic Order Graph

Two elements u, v of a poset (P,≤) are said to be com-
parable if either u ≤ v or v ≤ u. A chain in a poset is
a totally ordered subset, i.e., a subset of pairwise com-
parable elements. A chain u = u1 > u2 > · · · > ul = v
from u to v is said to have length l − 1. A chain is said
to be saturated when no further elements can be interpo-
lated between its elements. In other words, all successive
relations in a saturated chain are coverings [9].

In particular, a saturated chain of length l − 1 in our
poset In is a subset

{
u1, u2, . . . , ul

}
of {0, 1}n, such that

u1 � u2 � · · · � ul, i.e., u1 � u2 � · · · � ul with no other
elements between them.

A chain decomposition of a poset P is a family of disjoint
chains whose union is P . A chain cover of a poset P is
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a chain decomposition into saturated chains, i.e., a set of
disjoint saturated chains covering all elements of P .

Let us mention that one can define many different chain
covers of In. The most intuitively natural way for par-
titioning In into saturated chains is clearly suggested by
Figs. 1 or 2. Just consider the 2n−2 “columns” obtained
after n−2 successive bisections of In, containing four con-
secutive numbers beginning with a multiple 4k of 4, each.
For instance, see the 23 = 8 “columns” in I5, depicted in
Fig. 2. Next Corollary formalizes this chain cover.

Corollary 4.1 For all n ≥ 2 the poset In can be parti-
tioned into the following 2n−2 saturated chains of length
3, that we call “congruence chains (mod 4)”:

4k � 4k + 1 � 4k + 2 � 4k + 3
(
0 ≤ k ≤ 2n−2 − 1

)
.

Proof. Clearly, for all k ∈ [
0, 2n−2 − 1

]
, that is, for all

k ≡ (u1, . . . , un−2) ∈ {0, 1}n−2, the matrices

M4k
4k+1 =

(
u1 . . . un−2 0 0
u1 . . . un−2 0 1

)
,

M4k+1
4k+2 =

(
u1 . . . un−2 0 1
u1 . . . un−2 1 0

)
,

M4k+2
4k+3 =

(
u1 . . . un−2 1 0
u1 . . . un−2 1 1

)

have either the pattern (2.3) or the pattern (2.4). Finally,
since all these saturated chains are pairwise disjoint, and
they completely cover In, i.e.,⋃

0≤k≤2n−2−1

{4k, 4k + 1, 4k + 2, 4k + 3} = [0, 2n − 1] ,

the proof is concluded. �

The rest of this section is devoted to present a second
chain cover of the poset In, far less intuitive than the con-
gruence chains (mod. 4), but more relevant to the analysis
of CSBSs. Basically, we shall use “diagonals” instead of
“columns”, for partitioning In.

Lemma 4.1 (A symmetry property) For all n ≥ 2,
the complementary set Cc of a saturated chain C of In

is also a saturated chain, and the elements of Cc are the
complementary of the elements of C in reverse order, i.e.,

u1 � u2 � · · · � ul ⇔ (
ul

)c
� · · · � (

u2
)c

�
(
u1

)c
.

Proof. Clearly, the
(
0
0

)
,

(
1
1

)
,

(
0
1

)
and

(
1
0

)
columns in

Mu
v , respectively become

(
1
1

)
,

(
0
0

)
,

(
0
1

)
and

(
1
0

)
columns

in Mvc

uc . Hence, using Theorem 2.2, we have that u � v
iff Mu

v has either the pattern (2.3) or the pattern (2.4)
iff Mvc

uc respectively has either the pattern (2.3) or the
pattern (2.4) iff vc � uc. �

Next theorem establishes the chain cover of the poset In

into “diagonal” saturated chains.

Theorem 4.1 For all n ≥ 3 the poset In can be parti-
tioned into the “diagonal” saturated chains displayed from
top to bottom (and also from right to left) in its IOG.

Proof. We classify the set of “diagonal” saturated chains
for covering In into the following three kinds (see Defini-
tion 2.1-(iii)&(iv) for the notation and nomenclature):

(i) The chain containing all n-tuples of weights 0 and 1.
This is the right-most (and also the top-most) “diagonal”
chain in the digraph of In:

0� [1]n = 1� [2]n = 2� [3]n = 22 � · · ·� [n]n = 2n−1. (4.1)

Indeed, 0 � 1, and 2i � 2i+1 (0 ≤ i ≤ n − 2) because

M0,...,0,0
0,...,0,1 and M0,...,0,0,1,0,...,0

0,...,0,1,0,0,...,0

have the pattern (2.3) and (2.4), respectively.

(ii) The chains containing the following n-tuples:⎧⎨
⎩

If n is odd: all n-tuples of weights 2, 3, . . . , n−1
2 .

If n is even:
{

all n-tuples of weights 2, 3, . . . , n
2 − 1,

those n-tuples of weight n
2 s.t. un = 1.

(4.2)

The construction of such chains must be performed as
follows. For each fixed admissible Hamming weight m,
consider all the admissible n-tuples with weight m, and
sort them by lexicographic order of the vectors of posi-
tions of their 1-bits. Then, beginning with the first vector
[1, 2, . . . ,m]n of this sorted list and ending with its last
vector [n − m + 1, n − m + 2, . . . , n]n, we proceed as fol-
lows. Two any consecutive elements u = [i1, i2, . . . , im]n
and v = [j1, j2, . . . , jm]n of this list (i.e., u immediately
precedes v in the list) will be consecutive n-tuples in the
same saturated chain (i.e., u � v) iff their vectors of posi-
tions of 1s only differ in one component (position). Oth-
erwise, v will be the first element of a new chain, and we
proceed exactly in the same way with v and its immediate
successor w in the sorted list, and so on.

Indeed, note that, for every fixed weight m, if the vectors
u = [i1, i2, . . . , im]n and v = [j1, j2, . . . , jm]n only differ
in one component, say ip �= jp, then jp = ip + 1. This
is because v immediately succeeds to u in the list of the
vectors of positions of 1s arranged by lexicographic order.
But to say that the vectors of u and v only differ in the
p-th component with jp = ip + 1 is equivalent to saying
that matrix Mu

v has the pattern (2.4), and thus u � v.

(iii) Complementary chains of those obtained in (i) & (ii):

Call S the set of all binary n-tuples included in all chains
generated in steps (i) & (ii). Clearly, there are

(
n
m

)
binary

n-tuples with weight m. Hence, from (4.1) and (4.2), we
have that the cardinality of S is given by{

If n is odd:
(
n
0

)
+

(
n
1

)
+ · · · + (

n
n−3

2

)
+

(
n

n−1
2

)
= 2n−1,

If n is even:
(
n
0

)
+

(
n
1

)
+ · · · + (

n
n
2 −1

)
+ 1

2

(
n
n
2

)
= 2n−1,
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so that, in both cases (n odd, n even), we have used in
steps (i) & (ii) exactly half of the set {0, 1}n of binary
n-tuples (whose cardinality is 2n).

Now, taking into account again (4.1) and (4.2), we have
that all the n-tuples of S have weight m < n

2 (with the
only exception of those n-tuples of weight m = n

2 s.t.
un = 1, if n is even). Note that the complementary n-
tuple of a binary n-tuple of weight m obviously has weight
n − m. Then all the complementary n-tuples of the n-
tuples of S have weight n−m > n− n

2 = n
2 (with the only

exception of those n-tuples of weight n−m = n− n
2 = n

2
s.t. un = 0, if n is even). This implies that

S ∩ Sc = ∅
and this empty intersection means that, among the 2n−1

nodes of S (i.e., the ones used in steps (i) & (ii)), there is
no pair of complementary n-tuples. Consequently, using
Lemma 4.1, we conclude that it suffices to take the com-
plementary chains of those covering the half S of In (steps
(i) & (ii)), to cover the other half Sc of In (step (iii)). Fi-
nally, since all the chains generated in this way are, by
construction, saturated, pairwise disjoint, and they com-
pletely cover our poset In, the proof is concluded. �

Example 4.1 The “diagonal” chain cover of I4 (n = 4,
even) has the following 4 chains, displayed from top to
bottom (and also from right to left) in I4 (see the right-
most graph in Fig. 1, and use (2.1) for step(iii)):

(i) C1 =
˘
0 � [1]4 � [2]4 � [3]4 � [4]4

¯
= {0 � 1 � 2 � 4 � 8} ,

(ii) C2 =
˘
[1, 2]4 � [1, 3]4 � [1, 4]4

¯
= {3 � 5 � 9} ,

(iii) Cc
2 = {6 � 10 � 12} ,

Cc
1 = {7 � 11 � 13 � 14 � 15} .

Example 4.2 The “diagonal” chain cover of I5 (n = 5,
odd) has the following 8 chains, displayed from top to
bottom (and also from right to left) in I5 (see Fig. 2, and
use (2.1) for step(iii)):

(i) C1 =
˘
0 � [1]5 � [2]5 � [3]5 � [4]5 � [5]5

¯

= {0 � 1 � 2 � 4 � 8 � 16} ,

(ii) C2 =
˘
[1, 2]5 � [1, 3]5 � [1, 4]5 � [1, 5]5

¯
= {3 � 5 � 9 � 17} ,

C3 =
˘
[2, 3]5 � [2, 4]5 � [2, 5]5

¯
= {6 � 10 � 18} ,

C4 =
˘
[3, 4]5 � [3, 5]5 � [4, 5]5

¯
= {12 � 20 � 24} ,

(iii) Cc
4 = {7 � 11 � 19} ,

Cc
3 = {13 � 21 � 25} ,

Cc
2 = {14 � 22 � 26 � 28} ,

Cc
1 = {15 � 23 � 27 � 29 � 30 � 31} .

5 Concluding Remarks

We have partitioned the IOG for CSBSs in two different
ways. The first one consists of successively bisecting In

into smaller and smaller subgraphs. The main interest
of this iterative bisection process is the following. The
(ordering between the) occurrence probabilities of the 2k

equal-sized subgraphs –obtained after k successive bisec-
tions of In– exactly coincides with the (ordering between

the) occurrence probabilities of the corresponding 2k bi-
nary k-tuples whose components are the k left-most bits
of all nodes lying on those subgraphs. Hence, k successive
bisections of In lead to Ik: a useful, nice, fractal property
for the analysis of CSBSs! The second one consists of cov-
ering In with the “diagonal” chains displayed from top to
bottom in its IOG. The main interest of this chain cover
is the following. One of the main problems in Reliability
Engineering and Risk Analysis is to determine the system
elementary states with the largest occurrence probabili-
ties [1]. Such elementary states are usually those hav-
ing the smallest Hamming weights, and with their 1-bits
placed among the right-most positions. But, precisely,
the up-most “diagonal” chains of our chain partition con-
tains the binary n-tuples satisfying both conditions. This
can be also applied, in Fault Tree Analysis, for evaluating
the system unavailability.
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[7] González, L., “Ranking intervals in complex stochas-
tic Boolean systems using intrinsic ordering,” in Ma-
chine Learning and Systems Engineering, Rieger, B.
B., Amouzegar, M. A., Ao, S.-I., Eds., Springer, to
be published.
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