


Abstract— An alternate method for the convolution of two

functions is presented in which those functions can be described
in terms of completely arbitrarily, non-uniform sampled ranges.
The approach treats the functions as being defined by the linear
segments between sampling points rather than the points
themselves, and calculates a result using an analytic solution of
the convolution of two finite line segments. It is observed that the
approach can provide computational savings in circumstances
where the non-uniform range specifications enable the functions
to be adequately described with fewer sampling points.

Index Terms— Convolution, distribution, linear, piecewise,
probability density.

I. INTRODUCTION

he demand for increasing accuracy and applicability of
computer simulations and calculations to physical systems
has resulted in a corresponding need for greater

sophistication and precision in the digital encoding and
manipulation of measurements. Where the representation of a
distribution using single values or a limited subset of
statistical moments (mean, median, standard deviation, and so
forth) was once the only feasible approach, current
expectations often require embracing more careful and
exacting treatment. Unfortunately, even comparatively
modest calculations involving arbitrary distributions (i.e. those
distributions that cannot be represented analytically) can be
demanding.

 This work resulted from a need to utilize and manipulate
measurements within a tool for predictive modeling of
physical systems. In that analysis, as in many cases, the
system’s capabilities were driven by tails of the distributions
of measurements and were largely invariant to the means or
medians. In some instances, the model would need to
incorporate multimodal measurements of physical quantities,
where representing the parameter with a single number, or
even a limited number moments of the distribution, would
produce unrealistic results.

 To address the problem, the above-mentioned code was
rewritten to use distributions in place of single numbers. This

Manuscript received December 18, 2009.
J. A. Dunne is with the Johns Hopkins University Applied Physics

Laboratory, Laurel, MD 20723 USA (phone: 443-778-4722; fax: 443-778-
5950; e-mail: jeffrey.dunne@jhuapl.edu).

K. M. Ligozio is with the Johns Hopkins University Applied Physics
Laboratory, Laurel, MD 20723 USA (kevin.ligozio@jhuapl.edu).

resulted in the need to do numerous convolutions, one for
each addition or subtraction of quantities. Because the
quantities were taken from measurements, there was no
assurance of a uniform grid of possible outcomes for any
given random variable, and with the various quantities coming
from different sources, there was no single “grid” spacing that
was natural to imposed on the measurements. Random
variable (RV) X, for example, might have ten values ranging
from 3 to 4, while Y could have ten values ranging from 1000
to 2000. Imposing a single grid meant that in order to retain
the relevant resolution for X, the representation of Y would
require 10,000 points, 9990 of which were interpolations that
carried no information content.

 The typical approach for efficient convolution uses Fast
Fourier Transforms (FFTs). While such implementations can
be extremely efficient, there comes a limit where the increase
in the number of points resulting from establishing a uniform
grid – whether it is 10,000 or 100 million – outweighs the
efficiency of the algorithm. While algorithms have been
developed that utilize multiple grid/sampling rate resolutions
[1], this is not a uniformly practical approach when working
with measured data where there are potentially few, if any,
portions of data that share a common spacing of RV values, or
where algorithmically finding an appropriate grid might be
more computationally intensive than doing the convolution
calculation itself.

 This motivated the search for an approach to convolution
that could be carried out on fully arbitrary functions, i.e.
without requiring any uniformity in the gridding by which the
functions were characterized. The approach reported herein is
noteworthy for two reasons. First, for the reasons outlined
above, there are certain circumstances (e.g. when significant
upsampling is required of the component functions to enable
the standard approach) where its ability to compute
convolutions using completely arbitrary function sampling
enables it to run faster than the standard algorithms. Second,
from a more academic perspective, it illustrates an alternate
perspective from which to approach working with sampled
functions. There are occasions where it is advantageous to
consider a set of points as defining a function not as
instantaneous snapshots of the function values, but rather by
the segments connecting those points. As a tractable starting
position with an easily derived analytic solution, the approach
outlined in this paper treats the points as connected by straight
line segments. However, just as Simpson’s rule extends the
trapezoidal rule, more precise algorithms could be developed
if the required accuracy so demanded.

Line Segment Convolution

Jeffrey A. Dunne, Kevin M. Ligozio

T

Proceedings of the World Congress on Engineering 2010 Vol III
WCE 2010, June 30 - July 2, 2010, London, U.K.

ISBN: 978-988-18210-8-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2010

In summary, this paper describes an approach for
calculating the sum of two arbitrary, continuous RVs
represented by a sampling of their associated probability
densities that is finite and potentially possesses no uniformity.
It does not rely on FFTs, but rather utilizes an analytic
solution for the convolution of finite linear segments. The
approach can be less computationally demanding than
standard convolution in cases where a) the two functions have
substantially different resolutions, b) the functions do not have
any regular grid by which they can be defined, or c) only a
small subset of the distributions require fine sampling to
capture the nature of those distributions, i.e. where non-
uniformly spaced representations of the probability
distributions are preferable.

II. ALGORITHM OVERVIEW

Typically, a distribution represented by a finite number of
samples of the probability density is viewed as being
represented by the samples themselves, and so the convolution
process requires a uniformly sampled axis of the RV range in
order to produce a meaningful result. The motivation for this
algorithm is to consider the finite samples as not representing
the distribution directly, but rather through the straight line
segments that connect those samples, i.e. where ns samples are
used to represent (ns – 1) straight line segments. These (ns – 1)
segments are then “convolved” in order to obtain the solution.
The computational savings does not result from the minimal
decrement of ns to (ns – 1), but rather from the reduction of ns
that arises from being able to utilize a non-uniformly sampled
RV range, as illustrated in Figure 1.

Fig. 1. Non-uniform sampling (circles) as compared with uniformly sampled
representations (dots) typically used with convolution

 In the algorithm, the probability is the area under the
function (the probability density) defined by connecting
straight line segments. A simple extension permits handling
discontinuous functions as well. As with any sampled
function, representations can be made arbitrarily exact by
including additional sample points, although as described
earlier, the primary value of the algorithm is realized in cases
where an exact representation is not necessary to obtain the
accuracy required of the result.

The approach utilizes the analytic solution of the
convolution of two arbitrary but finite line segments to break

up the total convolution into (ms – 1)(ns – 1) individual
operations, where ms and ns are the total numbers of data
points in the two distributions to be convolved. Each
comprising calculation combines two non-normalized
analytical densities (the straight line segments) to provide a
non-normalized contribution to the final solution. The
summation of all such solutions is automatically normalized to
the product of the normalizations of the individual probability
densities.

III. STRAIGHT LINE SEGMENT CONVOLUTION

Consider two functions for straight line segments,

       xhxhbxmxf ff  21  (1)

       xhxhbxmxg gg  21  (2)

where h(x) represents a step function at x = 0, mf and mg are
the slopes of the lines, and bf and bg are the y-intercepts of the
lines defined by these segments. 1 and 2 represent the
starting and ending range values of the line segment defined
by f(x), just as 1 and 2 define those limits for g(x).

Without loss of generality we can set 1 and 1 to 0, and

define af  2 – 1 and ag  2 – 1 as the length of each line
segment, giving:

       xahxhbxmxf fff  (3)

       .xahxhbxmxg ggg  (4)

For the sake of this derivation, we will assume, also without
loss of generality (because convolution is commutative), that
af ≤ ag.

The convolution of f(x) and g(x) is given by:

      .




 dxxxgxfxc (5)

The step functions from f(x) can be easily applied to the

limits of the integral to give:

      
     .

0

dxxxahxxh

bxxmbxmxc

g

a

ggff

f



  (6)

The application of the remaining step functions to the limits

of integration is most easily implemented by recognizing three
distinct conditions of integration:

Proceedings of the World Congress on Engineering 2010 Vol III
WCE 2010, June 30 - July 2, 2010, London, U.K.

ISBN: 978-988-18210-8-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2010

Region Definition Integration Limits

I
fax 0 x0

II
gf axa  fa0

III
gfg aaxa  fg aax 

No regions of consideration are required for 0x or

xaa gf  as there is no overlap of f(x) and  xxg 

under these conditions, i.e. the regions do not contribute to the
integral.

With these limits 1 and 2 established, the integral itself
results in a simple polynomial:

     

.
3

2

2

1

3

2
















x
mm

x
mbbmxmmxxmbbbxc

gf

gfgfgfgfgf (7)

Writing the solutions cI, cII, and cIII, corresponding to these

three conditions gives:

   
62

32 x
mm

x
mbbmxbbxc gfgfgfgfI  (8)

     

xamb
a

mm

a
mm

a
mbbmabbxc

fgf
f

gf

f
gf

f
gfgffgfII

























2

32

2

32

 (9)

     

.
3

2

1

3

21





gf

gfgfgfgfgfIII

mm

mbbmxmmbbxmbxc




 (10)

The terms 1, 2, and 3 are given by:

 gf axa 1 (11)

 22
2 gf axa  (12)

  .33
3 gf axa  (13)

Assigning a value of zero to each of these components for

values of x outside the solutions’ boundaries of applicability,
one could also write the solution in terms of a single

equation        xcxcxcxc IIIIII  , which could then be

integrated from 0 to af + ag to show that this result possesses
the same net probability as the product of total probabilities in
f(x) and g(x), i.e.:

  .22
4 gggfff

gf bambam
aa

 (14)

IV. ALGORITHM IMPLEMENTATION

The implementation of the line segment convolution method
is straightforward, and illustrated by the following steps:

1. Given two inputted functions with ms and ns point
pairs (e.g. value/probability density pairs in the
example outlined in section I), calculate the slopes
and horizontal lengths of the contained   (ms – 1)
and   (ns – 1) straight line segments.

2. Establish an output axis vector of interest. To
simulate the output of a standard convolution this
could be a vector of range values spanning min(f(x))
+ min(g(x)) through max(f(x)) + max(g(x)) and
spaced according to the smallest interval in either of
the inputted functions. However, it is equally
feasible to include only selected portions of the
resulting distribution, or to sample more finely in
certain regions than others1.

3. Establish an empty (i.e. zeroed) output value vector
of matching size.

4. Loop through the N =  segment pairings between
inputted functions. For each pairing of segments
(i,j):

a. Define x1 and x2 as the minimum and
maximum domain values for the i segment,
and similarly x1 and x2 forj.

b. Select the points P in the output axis vector
that fall within x1 + x1  x2 + x2.

c. Temporarily consider those P points to
represent the range 0 to (af + ag), where af is
the lesser of (x2 – x1) or (x2 – x1) and ag is
the greater of the two differences. In other
words, any value in P is considered to have
a temporary value of its actual value less
(x1 + x1).

d. Select the appropriate slope and intercept for
af and ag. If af = (x2 – x1) then mf is the
slope of i, bf = x1, mg is the slope of j, and
bg = x1. If af = (x2 – x1) then mf is the
slope of j, bf = x1, mg is the slope of i, and
bg = x1.

e. Calculate the values corresponding to each
axis value in P using the previously

described  xc , and increment the

associated points in output vector by those
values.

1 The steps outlined here are only one implementation. A more complex

implementation might establish an axis but intentionally not fill in points that
do not carry unique content, while a still more complex approach might not
pre-establish an output vector of the result at all, but rather build one
dynamically during the calculation. The choice of implementations is entirely
dependant on the needs of the system. The steps used here were selected
because they could be described simply.

Proceedings of the World Congress on Engineering 2010 Vol III
WCE 2010, June 30 - July 2, 2010, London, U.K.

ISBN: 978-988-18210-8-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2010

V. RUN-TIME ANALYSIS

 In order to compare the running times of the FFT
convolution and line segment convolution algorithms, we
implemented the recursive Cooley-Tukey FFT algorithm
using source code from [2]. The performance of this
algorithm is known to be O(N log2 N) [3]. In order to
understand where the line segment convolution algorithm has
performance advantages over traditional FFT convolution, it is
important to understand how N varies with various inputs.
The Cooley-Tukey implementation used for these experiments
operates only on powers of two, and requires that both input
vectors are of the same size. Further, the computations must
be performed at the smallest increase in x values in either
input. For example, if we have x1 = [1,2,3,…1000] and x2 =
[1,1.1,50], the resulting output x vector would be the 106
elements of [1,1.1,1.2,…1000]. Since the algorithm works
only on powers of two, we need to pad the input vectors with
zeros to get a total N = 220 = 1,048,576. It is this type of
inflation that led to the development of the line segment
convolution approach.

 The line segment convolution algorithm is O(n·m·p) where
n = |x1| and m = |x2|. p varies with the x values in the input
arrays such that at each iteration of n and m, p is the length of
the resulting line segment range. In order to understand this
more clearly, consider the following pseudocode:

 In the case of the x1 and x2 above, the first line segments
would range from [1..2] and [1..1.1], respectively. Hence the
inner most loop would range from [2..3.1] with a step size of
0.1. Understanding the variable p helps to show why the
benefit of line segment convolution is situational.

 The following empirical results illustrate a simple run-time
comparison between the two algorithms. The x1 vector is held
constant throughout as x1 = [1,2,…10000], and x2 = [1,2,… m]
where 5 ≤ m ≤ 2000 at steps of 5. We expect that varying the
size of x2 will not affect the FFT convolution run time because
we do not increase the size to be greater than x1 (and so FFT
convolution will always operate as though x2 were as large as
x1). We further expect a linear increase in the line segment

convolution algorithm because n is held constant and m is
increased linearly. The following chart shows the run-time
results as a function of m.

Fig. 2. Run time comparison of FFT and Line Segment

Convolution for N=10000 as a function of secondary input
vector size

Note that linear convolution outperforms FFT convolution for
m ≤ 450.

 In this example, n is held constant; however one can also
imagine inputs where both n and m could be significantly
smaller than the corresponding vectors that would result in the
same computational demand on the FFT approach. For
example, consider x1 = [1,2,8,10000] and x2 = [1,2,3,7,20]. In
such a case, n = 4 and m = 5, while N remains 10000. Such a
case would correspond (roughly) to a point in Fig. 2 at 0.002
(= 4·5/104) on the horizontal axis3.

VI. ERROR ANALYSIS

Theoretically, the standard FFT-based approach has the
advantage of representing functions very precisely (up to
Nyquist limitations). Consequently, it does a very good job of
estimating convolutions. The discretization of using line
segments to represent continuous, smooth functions would be
expected to introduce greater errors in such calculations.
However, it is important to recognize that the advantage for
this approach is in cases where a full sampling of the
distribution is not available, in which case any approximation
of the shape of the function to be convolved would introduce
the same errors in the FFT approach.

Some evaluation of the residual errors resulting from the

algorithm were assessed using representations of two
Gaussians (mean of 4, standard deviation of 1), the
convolution of which is known analytically to be a third

Gaussian (mean of 8, standard deviation of 2). The inputs
were normalized to unit area under the curves, as were the
outputs4. For well-sampled distributions (each input

3 One can consider the horizontal axis scale in Fig. 2 as corresponding to

10-4 of the quantity n · m, since n is always 104 in this example.
4 Note that only the FFT-based result of the convolution required an

adjustment. The output of this algorithm is automatically normalized such
that the area under the curve is the product of the areas under the input curves.

function doLineSegmConv (Segment[] ls1,
 Segment[] ls2)
 n = length(ls1)
 m = length(ls2)
 loop i from 1 to n
 loop j from 1 to m
 startAt = ls1[i].getMinX() +
 ls2[j].getMinX();
 endsAt = ls1[i].getMaxX() +
 ls2[j].getMaxX();
 loop k from startsAt to endsAt
 computeConv (ls1[i], ls2[j], k)
 end loop
 end loop
 end loop
end function

Proceedings of the World Congress on Engineering 2010 Vol III
WCE 2010, June 30 - July 2, 2010, London, U.K.

ISBN: 978-988-18210-8-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2010

consisting of 100 points in the analysis that was performed), a
plot of the outputs is not informative, as all three outputs (the
analytic solution, the FFT-based result, and the line segment
convolution result) are indistinguishable by eye at a scale
where the entire distribution is represented. The root mean
square relative difference for this algorithm was ~0.9%. In
comparison, the FFT-based approach resulted in a value of
~0.5%.

For poorly sampled distributions, the line segment approach

tended to broaden the convolution just slightly more than did
the FFT-based approach, as shown in Fig. 3. Note that what
appears to be a noticeable difference in peak values is only an
artifact of the sample spacing.

4 6 8 10 12
0

0.05

0.1

0.15

0.2

0.25

0.3

LSC
Analytic
FFT

Fig. 3. Comparison of the convolution of poorly sampled

inputs to analytic solution

Lastly, it is reasonable to expect that one could reduce any

residual errors from this algorithm to be even closer to those
realized by the FFT-based approach by using a more robust
curve representation strategy than that of straight lines, such
as an extension of the basic concept described in this paper
that uses higher-order polynomials instead of line segments
for estimating the curve between the points.

VII. SUMMARY OBSERVATIONS

It has been shown that for certain applications, the
algorithm described in this paper can realize computational
savings over traditional convolution approaches. Specifically,
these savings occur when traditional approaches require
significant upsampling of sparsely known functions, such as
might occur from measurement-based probability
distributions.

Two key questions that are central in assessing any new

algorithm or numerical approach are those of accuracy and
computational efficiency. For the former, it has been
observed that the linearization of a function does produce
some variation from exact solutions, however, those variations
are very small for well-sampled functions. Since the primary
value of the algorithm is for cases where the functions are not
finely sampled, however, future development might look at
applying a more sophisticated interpolation scheme, such as

cubic (or perhaps even a more generalized polynomial)
interpolation, that will still result in a closed-form solution for
convolution.

The computational efficiency that has been demonstrated

here can also be improved in a variety of ways. In the course
of assessing the computational comparison against the more
typical FFT-based convolution approach, several ideas for
increased efficiency have suggested themselves, such as more
complex logic for ordering calculations, or even dynamic
generation of the output vector spacing. It seems likely that
significant improvement in the algorithm’s efficiency could be
realized in future iterations.

REFERENCES
[1] W. Hackbusch, “Fast projected convolution of piecewise linear

functions on non-equidistant grids,” in From nano to space, Berlin:
Springer, 2008, pp. 145–160.

[2] FFT Java Implementation from the Princeton University CS Department
Programming in Java Course,
http://www.cs.princeton.edu/introcs/97data/FFT.java.html

[3] General Colley-Tukey FFT Algorithm information from Wikipedia,
http://en.wikipedia.org/wiki/Cooley–Tukey_FFT_algorithm

Proceedings of the World Congress on Engineering 2010 Vol III
WCE 2010, June 30 - July 2, 2010, London, U.K.

ISBN: 978-988-18210-8-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2010

