
 

 
Abstract— An alternate method for the convolution of two 

functions is presented in which those functions can be described 
in terms of completely arbitrarily, non-uniform sampled ranges.  
The approach treats the functions as being defined by the linear 
segments between sampling points rather than the points 
themselves, and calculates a result using an analytic solution of 
the convolution of two finite line segments.  It is observed that the 
approach can provide computational savings in circumstances 
where the non-uniform range specifications enable the functions 
to be adequately described with fewer sampling points. 
 

Index Terms— Convolution, distribution, linear, piecewise, 
probability density. 
 

I. INTRODUCTION 

he demand for increasing accuracy and applicability of 
computer simulations and calculations to physical systems 
has resulted in a corresponding need for greater 

sophistication and precision in the digital encoding and 
manipulation of measurements.  Where the representation of a 
distribution using single values or a limited subset of 
statistical moments (mean, median, standard deviation, and so 
forth) was once the only feasible approach, current 
expectations often require embracing more careful and 
exacting treatment.  Unfortunately, even comparatively 
modest calculations involving arbitrary distributions (i.e. those 
distributions that cannot be represented analytically) can be 
demanding.   
 
 This work resulted from a need to utilize and manipulate 
measurements within a tool for predictive modeling of 
physical systems.  In that analysis, as in many cases, the 
system’s capabilities were driven by tails of the distributions 
of measurements and were largely invariant to the means or 
medians.  In some instances, the model would need to 
incorporate multimodal measurements of physical quantities, 
where representing the parameter with a single number, or 
even a limited number moments of the distribution, would 
produce unrealistic results. 
 
 To address the problem, the above-mentioned code was 
rewritten to use distributions in place of single numbers.  This 
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resulted in the need to do numerous convolutions, one for 
each addition or subtraction of quantities.  Because the 
quantities were taken from measurements, there was no 
assurance of a uniform grid of possible outcomes for any 
given random variable, and with the various quantities coming 
from different sources, there was no single “grid” spacing that 
was natural to imposed on the measurements.  Random 
variable (RV) X, for example, might have ten values ranging 
from 3 to 4, while Y could have ten values ranging from 1000 
to 2000.  Imposing a single grid meant that in order to retain 
the relevant resolution for X, the representation of Y would 
require 10,000 points, 9990 of which were interpolations that 
carried no information content.   
 
 The typical approach for efficient convolution uses Fast 
Fourier Transforms (FFTs).  While such implementations can 
be extremely efficient, there comes a limit where the increase 
in the number of points resulting from establishing a uniform 
grid – whether it is 10,000 or 100 million – outweighs the 
efficiency of the algorithm.  While algorithms have been 
developed that utilize multiple grid/sampling rate resolutions 
[1], this is not a uniformly practical approach when working 
with measured data where there are potentially few, if any, 
portions of data that share a common spacing of RV values, or 
where algorithmically finding an appropriate grid might be 
more computationally intensive than doing the convolution 
calculation itself. 
 
 This motivated the search for an approach to convolution 
that could be carried out on fully arbitrary functions, i.e. 
without requiring any uniformity in the gridding by which the 
functions were characterized.  The approach reported herein is 
noteworthy for two reasons.  First, for the reasons outlined 
above, there are certain circumstances (e.g. when significant 
upsampling is required of the component functions to enable 
the standard approach) where its ability to compute 
convolutions using completely arbitrary function sampling 
enables it to run faster than the standard algorithms.  Second, 
from a more academic perspective, it illustrates an alternate 
perspective from which to approach working with sampled 
functions.  There are occasions where it is advantageous to 
consider a set of points as defining a function not as 
instantaneous snapshots of the function values, but rather by 
the segments connecting those points.  As a tractable starting 
position with an easily derived analytic solution, the approach 
outlined in this paper treats the points as connected by straight 
line segments.  However, just as Simpson’s rule extends the 
trapezoidal rule, more precise algorithms could be developed 
if the required accuracy so demanded. 
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In summary, this paper describes an approach for 
calculating the sum of two arbitrary, continuous RVs 
represented by a sampling of their associated probability 
densities that is finite and potentially possesses no uniformity.  
It does not rely on FFTs, but rather utilizes an analytic 
solution for the convolution of finite linear segments.  The 
approach can be less computationally demanding than 
standard convolution in cases where a) the two functions have 
substantially different resolutions, b) the functions do not have 
any regular grid by which they can be defined, or c) only a 
small subset of the distributions require fine sampling to 
capture the nature of those distributions, i.e. where non-
uniformly spaced representations of the probability 
distributions are preferable.  

 

II. ALGORITHM OVERVIEW 

Typically, a distribution represented by a finite number of 
samples of the probability density is viewed as being 
represented by the samples themselves, and so the convolution 
process requires a uniformly sampled axis of the RV range in 
order to produce a meaningful result.  The motivation for this 
algorithm is to consider the finite samples as not representing 
the distribution directly, but rather through the straight line 
segments that connect those samples, i.e. where ns samples are 
used to represent (ns – 1) straight line segments.  These (ns – 1) 
segments are then “convolved” in order to obtain the solution.  
The computational savings does not result from the minimal 
decrement of ns to (ns – 1), but rather from the reduction of ns 
that arises from being able to utilize a non-uniformly sampled 
RV range, as illustrated in Figure 1.  

 

 
Fig. 1.  Non-uniform sampling (circles) as compared with uniformly sampled 
representations (dots) typically used with convolution 
 

 In the algorithm, the probability is the area under the 
function (the probability density) defined by connecting 
straight line segments.  A simple extension permits handling 
discontinuous functions as well.  As with any sampled 
function, representations can be made arbitrarily exact by 
including additional sample points, although as described 
earlier, the primary value of the algorithm is realized in cases 
where an exact representation is not necessary to obtain the 
accuracy required of the result. 
 

The approach utilizes the analytic solution of the 
convolution of two arbitrary but finite line segments to break 

up the total convolution into (ms – 1)(ns – 1) individual 
operations, where ms and ns are the total numbers of data 
points in the two distributions to be convolved.  Each 
comprising calculation combines two non-normalized 
analytical densities (the straight line segments) to provide a 
non-normalized contribution to the final solution.  The 
summation of all such solutions is automatically normalized to 
the product of the normalizations of the individual probability 
densities. 

 

III. STRAIGHT LINE SEGMENT CONVOLUTION 

Consider two functions for straight line segments, 
 

       xhxhbxmxf ff  21   (1) 

       xhxhbxmxg gg  21   (2) 

 
where h(x) represents a step function at x = 0, mf and mg are 
the slopes of the lines, and bf and bg are the y-intercepts of the 
lines defined by these segments. 1 and 2 represent the 
starting and ending range values of the line segment defined 
by f(x), just as 1 and 2 define those limits for g(x). 

 
Without loss of generality we can set 1 and 1 to 0, and 

define af  2 – 1 and ag  2 – 1 as the length of each line 
segment, giving: 

 

       xahxhbxmxf fff   (3) 

       .xahxhbxmxg ggg   (4) 

 
For the sake of this derivation, we will assume, also without 
loss of generality (because convolution is commutative), that 
af ≤ ag. 

The convolution of f(x) and g(x) is given by: 
 

      .




 dxxxgxfxc  (5) 

 
The step functions from f(x) can be easily applied to the 

limits of the integral to give: 
 

      
     .

0

dxxxahxxh

bxxmbxmxc

g

a

ggff

f



   (6) 

 
The application of the remaining step functions to the limits 

of integration is most easily implemented by recognizing three 
distinct conditions of integration: 
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Region Definition Integration Limits 

I 
fax 0  x0  

II 
gf axa   fa0  

III 
gfg aaxa   fg aax   

 
No regions of consideration are required for 0x  or 

xaa gf   as there is no overlap of f(x) and  xxg   

under these conditions, i.e. the regions do not contribute to the 
integral. 
 

With these limits 1 and 2 established, the integral itself 
results in a simple polynomial: 

 

     

.
3

2

2

1

3

2
















x
mm

x
mbbmxmmxxmbbbxc

gf

gfgfgfgfgf  (7) 

 
Writing the solutions cI, cII, and cIII, corresponding to these 

three conditions gives: 

   
62

32 x
mm

x
mbbmxbbxc gfgfgfgfI   (8) 

     

xamb
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mm
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mm

a
mbbmabbxc

fgf
f

gf

f
gf

f
gfgffgfII


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





















2

32

2

32

 (9) 

     

.
3

2

1

3

21





gf

gfgfgfgfgfIII

mm

mbbmxmmbbxmbxc




 (10) 

The terms 1, 2, and 3 are given by: 
 

 gf axa 1  (11) 

 22
2 gf axa   (12) 

  .33
3 gf axa   (13) 

 
Assigning a value of zero to each of these components for 

values of x  outside the solutions’ boundaries of applicability, 
one could also write the solution in terms of a single 

equation        xcxcxcxc IIIIII  , which could then be 

integrated from 0 to af + ag to show that this result possesses 
the same net probability as the product of total probabilities in 
f(x) and g(x), i.e.: 

 

  .22
4 gggfff

gf bambam
aa

  (14) 

 

IV. ALGORITHM IMPLEMENTATION 

The implementation of the line segment convolution method 
is straightforward, and illustrated by the following steps: 
 

1. Given two inputted functions with ms and ns point 
pairs (e.g. value/probability density pairs in the 
example outlined in section I), calculate the slopes 
and horizontal lengths of the contained   (ms – 1) 
and   (ns – 1) straight line segments. 

2. Establish an output axis vector of interest.  To 
simulate the output of a standard convolution this 
could be a vector of range values spanning min(f(x)) 
+ min(g(x)) through max(f(x)) + max(g(x)) and 
spaced according to the smallest interval in either of 
the inputted functions.  However, it is equally 
feasible to include only selected portions of the 
resulting distribution, or to sample more finely in 
certain regions than others1. 

3. Establish an empty (i.e. zeroed) output value vector 
of matching size. 

4. Loop through the N =  segment pairings between 
inputted functions.  For each pairing of segments 
(i,j): 

a. Define x1 and x2 as the minimum and 
maximum domain values for the i segment, 
and similarly x1 and x2 forj. 

b. Select the points P in the output axis vector 
that fall within x1 + x1  x2 + x2. 

c. Temporarily consider those P points to 
represent the range 0 to (af + ag), where af is 
the lesser of (x2 – x1) or (x2 – x1) and ag is 
the greater of the two differences.  In other 
words, any value in P is considered to have 
a temporary value of its actual value less 
(x1 + x1). 

d. Select the appropriate slope and intercept for 
af and ag.  If af = (x2 – x1) then mf is the 
slope of i, bf = x1, mg is the slope of j, and 
bg = x1.  If af = (x2 – x1) then mf is the 
slope of j, bf = x1, mg is the slope of i, and 
bg = x1. 

e. Calculate the values corresponding to each 
axis value in P using the previously 

described  xc , and increment the 

associated points in output vector by those 
values. 

 

 
1 The steps outlined here are only one implementation.  A more complex 

implementation might establish an axis but intentionally not fill in points that 
do not carry unique content, while a still more complex approach might not 
pre-establish an output vector of the result at all, but rather build one 
dynamically during the calculation.  The choice of implementations is entirely 
dependant on the needs of the system.  The steps used here were selected 
because they could be described simply. 
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V. RUN-TIME ANALYSIS 

 In order to compare the running times of the FFT 
convolution and line segment convolution algorithms, we 
implemented the recursive Cooley-Tukey FFT algorithm 
using source code from [2].  The performance of this 
algorithm is known to be O(N log2 N) [3].  In order to 
understand where the line segment convolution algorithm has 
performance advantages over traditional FFT convolution, it is 
important to understand how N varies with various inputs.  
The Cooley-Tukey implementation used for these experiments 
operates only on powers of two, and requires that both input 
vectors are of the same size.  Further, the computations must 
be performed at the smallest increase in x values in either 
input.  For example, if we have x1 = [1,2,3,…1000] and x2 = 
[1,1.1,50], the resulting output x vector would be the 106 
elements of [1,1.1,1.2,…1000].  Since the algorithm works 
only on powers of two, we need to pad the input vectors with 
zeros to get a total N = 220 = 1,048,576.  It is this type of 
inflation that led to the development of the line segment 
convolution approach. 
 
 The line segment convolution algorithm is O(n·m·p) where 
n = |x1| and m = |x2|. p varies with the x values in the input 
arrays such that at each iteration of n and m, p is the length of 
the resulting line segment range.  In order to understand this 
more clearly, consider the following pseudocode: 
 

 
 
 In the case of the x1 and x2 above, the first line segments 
would range from [1..2] and [1..1.1], respectively.  Hence the 
inner most loop would range from [2..3.1] with a step size of 
0.1.  Understanding the variable p helps to show why the 
benefit of line segment convolution is situational. 
 
 The following empirical results illustrate a simple run-time 
comparison between the two algorithms.  The x1 vector is held 
constant throughout as x1 = [1,2,…10000], and x2 = [1,2,… m] 
where 5 ≤ m ≤ 2000 at steps of 5.  We expect that varying the 
size of x2 will not affect the FFT convolution run time because 
we do not increase the size to be greater than x1 (and so FFT 
convolution will always operate as though x2 were as large as 
x1).  We further expect a linear increase in the line segment 

 
 

convolution algorithm because n is held constant and m is 
increased linearly.  The following chart shows the run-time 
results as a function of m. 
 

 
Fig. 2.  Run time comparison of FFT and Line Segment 

Convolution for N=10000 as a function of secondary input 
vector size 

 
Note that linear convolution outperforms FFT convolution for 
m ≤ 450. 
 
 In this example, n is held constant; however one can also 
imagine inputs where both n and m could be significantly 
smaller than the corresponding vectors that would result in the 
same computational demand on the FFT approach.  For 
example, consider x1 = [1,2,8,10000] and x2 = [1,2,3,7,20].  In 
such a case, n = 4 and m = 5, while N remains 10000.  Such a 
case would correspond (roughly) to a point in Fig. 2 at 0.002 
(= 4·5/104) on the horizontal axis3. 

VI. ERROR ANALYSIS 

Theoretically, the standard FFT-based approach has the 
advantage of representing functions very precisely (up to 
Nyquist limitations).  Consequently, it does a very good job of 
estimating convolutions.  The discretization of using line 
segments to represent continuous, smooth functions would be 
expected to introduce greater errors in such calculations.  
However, it is important to recognize that the advantage for 
this approach is in cases where a full sampling of the 
distribution is not available, in which case any approximation 
of the shape of the function to be convolved would introduce 
the same errors in the FFT approach. 

 
Some evaluation of the residual errors resulting from the 

algorithm were assessed using representations of two 
Gaussians (mean of 4, standard deviation of 1), the 
convolution of which is known analytically to be a third 

Gaussian (mean of 8, standard deviation of 2 ).  The inputs 
were normalized to unit area under the curves, as were the 
outputs4.  For well-sampled distributions (each input 

 
3 One can consider the horizontal axis scale in Fig. 2 as corresponding to 

10-4 of the quantity n · m, since n is always 104 in this example. 
4 Note that only the FFT-based result of the convolution required an 

adjustment.  The output of this algorithm is automatically normalized such 
that the area under the curve is the product of the areas under the input curves. 

function doLineSegmConv (Segment[] ls1, 
                         Segment[] ls2) 
  n = length(ls1) 
  m = length(ls2) 
  loop i from 1 to n     
    loop j from 1 to m   
      startAt = ls1[i].getMinX() + 
                   ls2[j].getMinX(); 
      endsAt = ls1[i].getMaxX() +  
                   ls2[j].getMaxX(); 
      loop k from startsAt to endsAt  
         computeConv (ls1[i], ls2[j], k)    
      end loop 
    end loop 
  end loop 
end function 
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consisting of 100 points in the analysis that was performed), a 
plot of the outputs is not informative, as all three outputs (the 
analytic solution, the FFT-based result, and the line segment 
convolution result) are indistinguishable by eye at a scale 
where the entire distribution is represented.  The root mean 
square relative difference for this algorithm was ~0.9%.  In 
comparison, the FFT-based approach resulted in a value of 
~0.5%. 

 
For poorly sampled distributions, the line segment approach 

tended to broaden the convolution just slightly more than did 
the FFT-based approach, as shown in Fig. 3.  Note that what 
appears to be a noticeable difference in peak values is only an 
artifact of the sample spacing. 
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Fig. 3.  Comparison of the convolution of poorly sampled 

inputs to analytic solution 
 
Lastly, it is reasonable to expect that one could reduce any 

residual errors from this algorithm to be even closer to those 
realized by the FFT-based approach by using a more robust 
curve representation strategy than that of straight lines, such 
as an extension of the basic concept described in this paper 
that uses higher-order polynomials instead of line segments 
for estimating the curve between the points. 

VII. SUMMARY OBSERVATIONS 

It has been  shown that for certain applications, the 
algorithm described in this paper can realize computational 
savings over traditional convolution approaches.  Specifically, 
these savings occur when traditional approaches require 
significant upsampling of sparsely known functions, such as 
might occur from measurement-based probability 
distributions. 

 
Two key questions that are central in assessing any new 

algorithm or numerical approach are those of accuracy and 
computational efficiency.  For the former, it has been 
observed that the linearization of a function does produce 
some variation from exact solutions, however, those variations 
are very small for well-sampled functions.  Since the primary 
value of the algorithm is for cases where the functions are not 
finely sampled, however, future development might look at 
applying a more sophisticated interpolation scheme, such as 

cubic (or perhaps even a more generalized polynomial) 
interpolation, that will still result in a closed-form solution for 
convolution. 

 
The computational efficiency that has been demonstrated 

here can also be improved in a variety of ways.  In the course 
of assessing the computational comparison against the more 
typical FFT-based convolution approach, several ideas for 
increased efficiency have suggested themselves, such as more 
complex logic for ordering calculations, or even dynamic 
generation of the output vector spacing.  It seems likely that 
significant improvement in the algorithm’s efficiency could be 
realized in future iterations. 
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