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Abstract—In the present paper we study the wait-
ing time distributions of patterns of two successes sep-
arated by at most or exactly k−2 failures (k ≥ 3) in the
case of first-order dependent trials. Employing both
non-overlapping and overlapping counting schemes we
obtain closed formulas for the probability generating
functions and effective recursive schemes for the eval-
uation of the probability mass functions of the waiting
time random variables. Finally, we give applications
of our results to the moving window detection prob-
lem and a biomedical engineering one.
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1. Introduction

Recent research in applied probability has focused on the
waiting time distributions for the r-th (r ≥ 1) appearance
of patterns. Such distributions are applicable to DNA
matching (see [14]), meteorology and agriculture (see [5]),
ecology, psychology, statistical quality control, start-up
demonstration tests and the moving window detection
problem (see [15] and [3]). The latter applications are
related to the appearance of two successes separated by
a string of failures.

For any given integer k ≥ 3 we consider the patterns
E1: two successes are separated by at most k − 2 failures
and E2: two successes are separated by exactly k− 2 fail-
ures. Let {Zt, t ≥ 0} be a time-homogeneous Markov
chain with states labeled as 0 and 1, transition probabil-
ities pij = Pr(Zt = i | Zt−1 = j), t ≥ 1, 0 ≤ i, j ≤ 1,
and initial probabilities pj = P (Z0 = j), j = 0, 1. De-
note by T

(i)
r,k and W

(i)
r,k the waiting time for the r − th

occurrence of the pattern Ei, i = 1, 2, in Z0, Z1, Z2, . . .
according to the non-overlapping and overlapping count-
ing scheme, respectively.

In the case of i.i.d trials, T
(1)
r,k was studied by Koutras

[15] for k ≥ 2. For k = 2 the distribution of T
(1)
r,k is
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a special case of the negative binomial distribution of
order k, studied earlier by Philippou et al. [19]. The
pmf’s of T

(2)
r,k and W

(2)
r,k were derived for k ≥ 3 by Sen

and Goyal [21] using combinatorial methods. In the case
of first order dependent trials, the pgf of W

(1)
r,k was derived

by Antzoulakos [1]. In the case of higher order Markov
chains, Sarkar et al. [20] studied W

(i)
r,k (i = 1, 2) and

derived a system of equations satisfied by its pgf.

Presently, we employ the Markov chain embedding tech-
nique to obtain closed formulas for the probability gener-
ating functions and recursive schemes for the probability
mass functions of T

(i)
r,k and W

(i)
r,k , i = 1, 2. This is done

in Section 2. In Section 3 we apply our results on T
(1)
r,k

and W
(1)
r,k . We first give numerics on a variation of the

moving window detection problem. Then, we present a
possible application of W

(1)
r,k in Biomedical Engineering.

We suggest that the random variable W
(1)
r,k could enrich

an approach currently investigated by a group of Bio-
medical Engineers and work as a decision criterion for
decreasing or increasing a patient’s mechanical support.
We review the research on this area and provide a few
illustrative numerics.

2. Waiting time distributions

Let Xn denote the number of appearances of a pattern E
in a sequence of n trials Z1, Z2, ..., Zn and Yr denote the
waiting time for the r-th occurrence of E in Z1, Z2, ....
Many formulas have been proved relating the distribu-
tions of Xn and Yr (see, for example, [16]). Thus, study-
ing the distribution of a waiting time variable through
the distribution of the associated binomial type one and
vice versa, is a procedure often followed in the literature.

In the present paper we shall adopt a similar approach.
To study the waiting time random variables T

(i)
r,k and

W
(i)
r,k , i = 1, 2, we shall first define the associated binomial

type ones. Let {Zt, 0 ≤ t ≤ n} be a time-homogeneous
Markov chain with states labeled as 0 and 1, transition
probabilities pij = Pr(Zt = i | Zt−1 = j), t ≥ 1, 0 ≤
i, j ≤ 1 and initial probabilities pj = P (Z0 = j), j = 0, 1.

Denote by N
(i)
n,k the number of occurrences of the pattern

Ei (i = 1, 2) when the patterns do not overlap, and by
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M
(i)
n,k the number of occurrences of the pattern Ei when

the patterns may overlap. The patterns Ei (i = 1, 2) are
defined as in the Introduction. For the derivation of the
results we will make use of the Markov chain embedding
technique introduced by Fu and Koutras [10] and subse-
quently enriched, among others, by Koutras and Alexan-
drou [17], Han and Aki [13], and Antzoulakos et al. [2]
(see also [11]). We shall first show, that under the ap-
propriate set-up, these random variables can be treated
as Markov chain embeddable variables of binomial type.
Before advancing to get our results, we deem necessary
to recall the definition of the Markov chain embeddable
variable of binomial type (MV B) from [17].

Let Xn (n a non-negative integer) be a non-negative fi-
nite integer-valued random variable and let `n = sup{x :
Pr(Xn = x) > 0} its upper end point.

Definition 2.1. The random variable Xn will be called
Markov chain embeddable variable of binomial type if

(a) there exists a Markov chain {Yt, t ≥ 0} defined on
a discrete state space Ω which can be partitioned as

Ω =
⋃

x≥0

Cx, Cx = {cx0, cx1, ..., cx,s−1},

(b) Pr(Yt ∈ Cy|Yt−1 ∈ Cx) = 0, for all y 6= x, x + 1
and t ≥ 1,

(c) the event Xn = x is equivalent to Yn ∈ Cx, i.e.

Pr(Xn = x) = Pr(Yn ∈ Cx), n ≥ 0, x ≥ 0.

It follows from condition (b) of Definition 2.1 that for {Yt,
t ≥ 0} there are only transitions within the same substate
set Cx and transitions from set Cx to set Cx+1. Those
two types of transitions give birth to the next two s × s
transition probability matrices

At(x) = (Pr(Yt = cxj |Yt−1 = cxi)),

Bt(x) = (Pr(Yt = cx+1,j |Yt−1 = cxi)).

In the present section we derive the probability generat-
ing function and establish recursive schemes for the eval-
uation of the probability mass function of T

(i)
r,k and W

(i)
r,k ,

i = 1, 2.

2.1. Distribution of T
(1)
r ,k

To study the distribution of the random variable T
(1)
r,k

we need to give the appropriate set-up under which the
associated binomial type random variable N

(1)
n,k can be

treated as an MV B. We set `n = [n/2] and define Cx =
{cx0, cx1, ..., cx,k}, x = 0, 1, . . . , `n, cxi = (x, i), 0 ≤ i ≤
k. We introduce a Markov chain {Yt, t ≥ 0} on Ω =⋃`n

x=0 Cx according to the following conditions:

(1) Yt = (0, 0) if Z1 = Z2 = ... = Zt = 0;

(2) Yt = (x, 0), x ≥ 0, if in the first t, t1 and t1 − 1
outcomes (t1 < t−k+2) the pattern E1 has occurred
x times, Zt1 = 1 and Zt1+1 = Zt1+2 = ... = Zt = 0;

(3) Yt = (x, 0), x ≥ 1, if in the first t outcomes the pat-
tern E1 has occurred x times, the x− th occurrence
of E1 occurred at the t1 − th trial (2 ≤ t1 < t) and
Zt1+1 = Zt1+2 = ... = Zt = 0;

(4) Yt = (x, 1), x ≥ 0, if in the first t and t−1 outcomes
the pattern E1 has occurred x times and Zt = 1;

(5) Yt = (x, i), x ≥ 0 and 2 ≤ i ≤ k − 1, if in the first
t, t − i + 1 and t − i outcomes (t ≥ i) the pattern
E1 has occurred x times, Zt−i+1 = 1 and Zt−i+2 =
Zt−i+3 = . . . = Zt = 0.

(6) Yt = (x, k), x ≥ 0, if in the first t outcomes the pat-
tern E1 has occurred x times, the x− th occurrence
of E1 occurred at the t − th outcome (consequently
Zt = 1).

With this set-up, the random variable N
(1)
n,k becomes an

MV B with

π0 = (p0, p1, 0, ..., 0)1×(k+1) ,

A =




(·, 0) (·, 1) (·, 2) (·, 3) · (·, k − 2) (·, k − 1) (·, k)
p00 p01 0 0 · 0 0 0
0 0 p10 0 · 0 0 0
0 0 0 p00 · 0 0 0
0 0 0 0 · 0 0 0
· · · · · · · ·
0 0 0 0 · 0 p00 0

p00 0 0 0 · 0 0 0
p10 p11 0 0 · 0 0 0




and the matrix B has all its entries 0 except for the entry
(2, k + 1) which equals p11 and the entries (i, k + 1), 3 ≤
i ≤ k, which are equal to p01.

Since N
(1)
n,k is an MV B, the double generating function

of T
(1)
r,k , is given by the following relation (see [2]).

H(z, w) = 1 + wzπ0[I − z(A + wB)−1]B1′. (2.1)

Set

D = p01p10 − p00p11,

L1 = 1− p00z + p1p11wz + wz2(Dp1 + p0p01p11 − p11
2)

+ wz3(p0p01
2p10 − 2p01p10p11 + p00p11

2),

L2 = p00
k−4p01p10z

k(−p00
2 + w(p01(p0p00 − p10)−

p1p00
2 −Dp00z)) and

L3 = 1− p00z − p11
2wz2 + wz3(p11

2p00 − 2p01p10p11)−
p00

k−3p01p10z
k(p00 −Dwz).
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Using (2.1), the set-up of the MV B N
(1)
n,k and some alge-

bra we get
∞∑

r=0

∞∑
x=0

Pr(T (1)
r,k = x)zxwr =

P1(z, w)
P2(z, w)

, (2.2)

where, for k ≥ 5,

P1(z, w) = L1 + L2 + p01
2p10wz4(p10 − p0p00)×

(1 + p00z + · · ·+ (p00z)k−5) and

P2(z, w) = L3 − p01
2p10

2wz4(1 + p00z);

for k = 4,

P1(z, w) = L1 + L2 and P2(z, w) = L3 − p01
2p10

2wz4

and for k = 3,

P1(z, w) = L1 − p00
k−4p01p10z

k − p01
2p10

2wzk

+ p00p01p10p11wzk+1 and P2(z, w) = L3.

Equating the coefficients of wr on both sides of (2.2) in
all cases, we get

Lemma 2.1. The probability generating function Hr(z)
of T

(1)
r,k is given by

Hr(z) =
(

z2(p11
2(1− p00z) + p01

2p10
2z2C(z)− E(z))

1− p00z − p00
k−2p01p10zk

)r−1

×
z(p1 + p0p01z − p00p1z)(p11 + p01p10zC(z))

1− p00z − p00
k−2p01p10zk

,

where C(z) = 1 + p00z + · · · + (p00z)k−3 and E(z) =
p01p10p11z((p00z)k−2 − 2).

We use Lemma 2.1 to derive the following recurrence.

Theorem 2.1. The probability mass function hr(x) of
T

(1)
r,k satisfies, for r ≥ 2 and x ≥ 2r − 1, the recursive

scheme
hr(x) =p00hr(x− 1) + p11(p11(hr−1(x− 2)

− p00hr−1(x− 3)) + 2p01p10hr−1(x− 3))

+ p01
2p10

2(p00
k−3hr−1(x− k − 1)

+ p00
k−4hr−1(x− k) + · · ·+ hr−1(x− 4))

+ p00
k−2p01p10(hr(x− k)− p11hr−1(x− k − 1)),

with initial conditions

h1(0) = 0,

h1(1) = p1p11,

h1(2) = p1p01p10 + p0p01p11,

h1(x) = p00h1(x− 1) + p0p00
x−3p01

2p10,

3 ≤ x ≤ k − 1,

h1(k) = p00h1(k − 1) + p00
k−3p01p10(p0p01 − p1p00),

h1(x) = p00h1(x− 1) + p00
k−2p01p10h1(x− k),

x > k,

h0(x) = δx,0, and hr(x) = 0 for r ≥ 1 and x < 2r − 1.

Proof. It follows from Lemma 2.1 that, for r ≥ 2,

(1− p00z − p00
k−2p01p10z

k)Hr(z) = Hr−1(z)×
z2(p11

2(1− p00z) + p01
2p10

2z2C(z)− E(z)).
(2.3)

Replacing Hr(z) by the power series Hr(z) =∑∞
x=0 hr(x)zx into (2.3) and equating coefficients of zx

on both sides of the resulting identity we get the recursive
relation of Theorem 2.1.

We follow the same procedure for r = 1.

2.2. Distribution of T
(2)
r ,k

We set `n = [n/k] and define Cx = {cx0, cx1, ..., cx,k}, x =
0, 1, . . . , `n, where cxi = (x, i), 0 ≤ i ≤ k. We introduce a
Markov chain {Yt, t ≥ 0} on Ω =

⋃`n

x=0 Cx according to
the conditions (1)-(6) of Section 2.1 (E1 is now replaced
by E2 and the inequality 2 ≤ t1 < t of condition (3)
becomes k ≤ t1 < t).).

With this set-up, the random variable N
(2)
n,k becomes an

MV B with

π0 = (p0, p1, 0, ..., 0)1×(k+1) ,

the matrix A is equal to



(·, 0) (·, 1) (·, 2) (·, 3) · (·, k − 2) (·, k − 1) (·, k)
p00 p01 0 0 · 0 0 0
0 p11 p10 0 · 0 0 0
0 p01 0 p00 · 0 0 0
0 p01 0 0 · 0 0 0
· · · · · · · ·
0 p01 0 0 · 0 p00 0

p00 0 0 0 · 0 0 0
p10 p11 0 0 · 0 0 0




and the matrix B has all its entries 0 except for the entry
(k, k + 1) which equals p01.

Using (2.1), the set-up of the MV B N
(2)
n,k and some alge-

bra we get

∞∑
r=0

∞∑
x=0

Pr(T (2)
r,k = x)zxwr =

P1(z, w)
P2(z, w)

, (2.4)

where

P1(z, w) = 1− z(p00 + p11)−Dz2 + p00
k−3p01p10z

k−1×
(1 + p1w − p00z + wz(p0p01 − p1p00 − p11)−Dwz2)

and

P2(z, w) = 1− z(p00 + p11)−Dz2 + p00
k−3p01p10z

k−1×
(1− p00z − p11wz −Dwz2).

Using (2.4) and following the methodology of Section 2.1,
we get the following results.
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Lemma 2.2. The probability generating function Hr(z)
of T

(2)
r,k is given by

Hr(z) =

[p00
k−3p01p10z

k−1]r[z(p11(p00z − 1)− p01p10z)]r−1F (z)
[−1 + z(p00 + p11) + Dz2 − p00

k−3p01p10zk−1(1− p00z)]r
,

where F (z) = p1(p00z − 1)− p0p01z.

Theorem 2.2. The probability mass function hr(x) of
T

(2)
r,k satisfies , for r ≥ 2, the recursive scheme

hr(x) =p00
k−3p01p10((p00hr(x− k)− hr(x− k + 1)

+ p01p10hr−1(x− k − 1)) + p11(hr−1(x− k)
− p00hr−1(x− k − 1))) + Dhr(x− 2)
+ (p00 + p11)hr(x− 1), x ≥ rk − 1,

with initial conditions

h1(x) = 0, x < k − 1,

h1(k − 1) = p1p10p00p01,

h1(k) = p00
k−3p01p10(p0p01 − p1p00)

+p1p10p00p01(p00 + p11),
h1(x) = p11h1(x− 1) + p01p10(h1(x− 2)

−p00
k−3h1(x− k + 1) + p00

k−2h1(x− k))
+p00(h1(x− 1)− p11h1(x− 2)), x > k,

h0(x) = δx,0, and hr(x) = 0 for r ≥ 1 and x < rk − 1.

2.3. Distribution of W
(1)
r ,k

We set `n = n − 1 and define Cx = {cx0, cx1, ..., cx,k−1},
x = 0, 1, . . . , `n, where cxi = (x, i), 0 ≤ i ≤ k − 1. We
introduce a Markov chain {Yt, t ≥ 0} on Ω =

⋃`n

x=0 Cx

according to the following conditions:

(1) Yt = (0, 0) if Z1 = Z2 = ... = Zt = 0;

(2) Yt = (x, 0), x ≥ 0, if in the first t outcomes the
pattern E1 has occurred x times, Zt1 = 1 and
Zt1+1 = Zt1+2 = ... = Zt = 0 (t1 < t− k + 2);

(3) Yt = (x, 1), x ≥ 0, if in the first t outcomes the
pattern E1 has occurred x times and Zt = 1;

(4) Yt = (x, i), x ≥ 0 and 2 ≤ i ≤ k − 1, if in the first t
outcomes (t ≥ i) the pattern E1 has occurred x times,
Zt−i+1 = 1 and Zt−i+2 = Zt−i+3 = . . . = Zt = 0.

With this set-up, the random variable M
(1)
n,k becomes an

MV B with

π0 = (p0, p1, 0, ..., 0)1×k ,

A =




(·, 0) (·, 1) (·, 2) (·, 3) · (·, k − 2) (·, k − 1)
p00 p01 0 0 · 0 0
0 0 p10 0 · 0 0
0 0 0 p00 · 0 0
0 0 0 0 · 0 0
· · · · · · ·
0 0 0 0 · 0 p00

p00 0 0 0 · 0 0




and the matrix B has all its entries 0 except for the entry
(2, 2) which equals p11 and the entries (i, 2), 3 ≤ i ≤ k,
which are equal to p01.

Using (2.1), the set-up of the MV B M
(1)
n,k and some al-

gebra we get that the double generating function of W
(1)
r,k

is equal to

H(z, w) =
P1(z, w)
P2(z, w)

, (2.5)

where, for k > 3,

P1(z, w) = 1− p00z − p0p11wz − p0p01p10wz2

+ p11wz2(p00 + p0p01 − p1p00)− p00
k−3p01p10z

k(p00(1 + w)

+ p0p01w − p1p00w) + p0p01
2p10wz3×

(1 + p00z + · · ·+ (p00z)k−4)

and

P2(z, w) = 1−p00z−p11wz−Dwz2−p00
k−2p01p10z

k(1−w);

for k = 3,

P1(z, w) =1− p00z − p0p11wz − p0p01p10wz2+

p11wz2(p00 + p0p01 − p1p00)− p00
k−3p01p10z

k×
(p00(1 + w) + p0p01w − p1p00w)

and

P2(z, w) = 1−p00z−p11wz−Dwz2−p00
k−2p01p10z

k(1−w).

Using (2.5) and following the methodology of Section 2.1,
we get the following results.

Lemma 2.3. The probability generating function Hr(z)
of W

(1)
r,k is given by

Hr(z) =
(

p11z + Dz2 − p00
k−2p01p10z

k

1− p00z − p00
k−2p01p10zk

)r−1

×
z(p1 + p0p01z − p00p1z)(p11 + p01p10zC(z))

1− p00z − p00
k−2p01p10zk

.

Theorem 2.3. The probability mass function hr(x) of
W

(1)
r,k satisfies , for r ≥ 2, the recursive scheme

hr(x) =p11hr−1(x− 1) + p01p10hr−1(x− 2)
+ p00(hr(x− 1)− p11hr−1(x− 2))

+ p00
k−2p01p10(hr(x− k)− hr−1(x− k)), x ≥ r,
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with initial conditions

h1(0) = 0,

h1(1) = p1p11,

h1(2) = p1p01p10 + p0p01p11,

h1(x) = p00h1(x− 1) + p0p00
x−3p01

2p10,

3 ≤ x ≤ k − 1,

h1(k) = p00h1(k − 1) + p00
k−3p01p10(p0p01 − p1p00),

h1(x) = p00h1(x− 1) + p00
k−2p01p10h1(x− k),

x > k,

h0(x) = δx,0, and hr(x) = 0 for r ≥ 1 and x < r.

2.4. Distribution of W
(2)
r ,k

We set `n = [(n− 1)/(k − 1)] and define Cx =
{cx0, cx1, ..., cx,k−1}, x = 0, 1, . . . , `n, where cxi = (x, i),
0 ≤ i ≤ k − 1. We introduce a Markov chain {Yt, t ≥ 0}
on Ω =

⋃`n

x=0 Cx according to the conditions (1)-(4) of
Section 2.3 (E1 is now replaced by E2).

With this set-up, the random variable M
(2)
n,k becomes an

MV B with

π0 = (p0, p1, 0, ..., 0)1×k ,

A =




(·, 0) (·, 1) (·, 2) (·, 3) · (·, k − 2) (·, k − 1)
p00 p01 0 0 · 0 0
0 p11 p10 0 · 0 0
0 p01 0 p00 · 0 0
0 p01 0 0 · 0 0
· · · · · · ·
0 p01 0 0 · 0 p00

p00 0 0 0 · 0 0




and the matrix B has all its entries 0 except for the entry
(k, 2) which equals p01.

Using (2.1), the set-up of the MV B M
(2)
n,k and some al-

gebra we get that the double generating function of W
(2)
r,k

is equal to

H(z, w) =
P1(z, w)
P2(z, w)

, (2.6)

where

P1(z, w) =1− z(p00 + p11)−Dz2 + p00
k−3p01p10z

k−1×
(1− p00(w + z) + p0wz)

and

P2(z, w) =1− z(p00 + p11)−Dz2 + p00
k−3p01p10z

k−1×
(1− w − p00z(1− w)).

Lemma 2.4. The probability generating function Hr(z)
of W

(2)
r,k is given by

Hr(z) =

[pk−3
00 p01p10z

k−1]r[p00z − 1]r−1[p1(p00z − 1)− p0p01z]
[−1 + z(p00 + p11) + Dz2 − pk−3

00 p01p10zk−1(1− p00z)]r
.

Theorem 2.4. The probability mass function hr(x) of
W

(2)
r,k satisfies the recursive scheme

hr(x) =p00
k−3p01p10(p00(hr(x− k)− hr−1(x− k))

+ hr−1(x− k + 1)− hr(x− k + 1)) + Dhr(x− 2)
+ (p00 + p11)hr(x− 1), x ≥ r(k − 1),

with initial conditions

h1(x) = 0, x < k − 1,

h1(k − 1) = p1p10p00p01,

h1(k) = p00
k−3p01p10(p0p01 − p1p00)

+p1p10p00p01(p00 + p11),
h1(x) = p11h1(x− 1) + p01p10(h1(x− 2)

−p00
k−3h1(x− k + 1) + p00

k−2h1(x− k))
+p00(h1(x− 1)− p11h1(x− 2)), x > k,

h0(x) = δx,0, and hr(x) = 0 for r ≥ 1 and x < r(k − 1).

In closing this section we mention that setting p0 = 1,
p1 = 0, p00 = p10 = q and p01 = p11 = p, our results
capture the case of i.i.d trials. in particular, Lemmas
2.1-2.4 reduce to respective results of [6].

3. Applications

In this section, we apply our results regarding the ran-
dom variables T

(1)
r,k and W

(1)
r,k . In 3.1 we generalize a vari-

ation of the moving window detection problem. In 3.2 we
propose an important application on the determination
of the level of mechanical support provided to a patient
in the intensive care unit. Our results can be combined
with a current approach, still in research, and work as a
decision criterion.

3.1. On the moving window detection prob-
lem

The moving window detection problem appears in [18]
and [12]. We recall its variant proposed in [15]. Con-
sider a radar sweep with a quantizer transmitting to the
detector the digit 1 or 0 according to whether the signal-
plus-noise waveform exceeds a predetermined threshold.
The detectors’ memory keeps track of the last k (at most)
transmitted digits and generates a pulse when two 1′s are
observed. Should this happen, the contents of the detec-
tors’ memory are erased and the next transmitted digit is
the first to be registered. The occurrence of the r-th pulse
indicates an alarm. The transmissions are considered to
be i.i.d.

We generalize the above variant considering transmis-
sions that are first order dependent. Indeed, the occur-
rence of a value exceeding the threshold increases the
probability of the occurrence of another one. In this case,
T

(1)
r,k denotes the waiting time for the r-th occurrence of a
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Figure 1: Distribution of T
(1)
5,6 for p0 = 0.75, p01 = 0.2 and p11 = 0.3

pulse. For illustration purposes consider the case r = 5,
k = 6, p0 = 0.75, p01 = 0.2 and p11 = 0.3. Then, using
Theorem 2.1, we calculate the distribution of T

(1)
5,6 (see

Figure 1).

We observe, for example, that the occurrence of the 5-th
pulse (alarm) will happen at the transmission of at most
80 digits with probability P (T (1)

5,6 ≤ 80) = 0.8768.

3.2. On patients’ mechanical support

Although the majority of patients receiving mechanical
ventilation can be successfully disconnected after passing
a trial of spontaneous breathing, approximately 20% of
ventilated patients need a gradual reduction of mechan-
ical support while they resume spontaneous breathing (
see [9]).

This slow decrease in the amount of ventilator support
with the patient gradually assuming a greater propor-
tion of overall ventilation is called weaning from mechan-
ical ventilation. The weaning is often taken to mean any
method of discontinuing mechanical ventilation. In any
case, a very significant fraction of a patient’s time in the
intensive care unit (ICU) is typically taken up with wean-
ing.

For the majority of mechanically ventilated patients this
process can be accomplished quickly and easily. There
is, however, a significant percentage of patients in whom
weaning fails. Part of the problem probably results from
the fact that even excellent physicians often do not accu-
rately judge when a patient is ready to wean but it is also
true that the clinical approach to weaning, if poorly orga-
nized, adds additional time to the duration of mechanical
ventilation.

Currently, weaning tends to be dictated by the experi-
ence and intuition of the attending physician who tries
to maintain the patient in a state of ’comfort’. However,
there is evidence that weaning may proceed more effi-
ciently if directed according to some specified protocol.

Indeed, attempts have been made to formulate the wean-
ing process as an algorithm, which could be automated
on a computer (see, for example, [8]). In a new system,

firstly proposed in [4], further developed in [7] and still
in research, the researchers monitor, investigate, and take
into account larger number of respiratory and cardio- cir-
culatory parameters, namely: respiratory rate (RR), tidal
volume (VT), the ratio RR/VT, pulse oxygen saturation
(SpO2), end-tidal CO2 partial pressure (PETCO2), heart
rate (HR), systolic arterial blood pressure (BP SAP),
mean arterial blood pressure (BP MAP), and the end-
expiratory pressure (PEEP). For each of these parame-
ters a comfort zone (CZ) is defined by the physicians,
specifying the range within the values of the monitored
parameters should lie in order for the patient to be in a
comfortable state. All the data are fed in a Fuzzy Logic
Controller, which depending on the state of the patient
decides if the patient’s support level should be decreased
or increased. This decision, within other parameters, is
also taken based whether one or more of the monitored
parameters are in or out of the CZ.

In the present paper we suggest that the random variable
W

(1)
r,k could be used as a decision criterion and enrich the

system described above. We focus on one of the para-
meters. Suppose we get values of the parameter every
20 sec. Each value may be in the CZ with probability
p00 or p10 if the previous value was in or out of the CZ,
respectively. Each value may be out of the CZ with prob-
ability p01 or p11 if the previous value was in or out of the
CZ, respectively. We denote by 0 and 1 the occurrence
of a value in and out of the CZ, respectively. The occur-
rence of two consecutive 1’s is a sign of a stabilized bad
condition and could speak for the increase of mechanical
support. This is the case even if the two consecutive 1’s
are separated by at most k− 2 0’s (the number of values
in the CZ is not enough to compensate for the others).
What k should be depends on the clinical case. It is also
clear that, for example, the occurrence of 111 implies a
worse condition for the patient than the occurrence of 11.
Thus, overlapping counting must be adopted.

To get some numerics, suppose that k = 4, p0 = 0.85,
p01 = 0.1 and p11 = 0.2. The probability p11 is greater
than p01 since the occurrence of a value out of the CZ
implies a less stable patients’ condition. We are inter-
ested in the distributions of W

(1)
r,4 , for various values of
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Figure 2: Distributions of W
(1)
3,4 and W

(1)
4,4 for p0 = 0.85, p01 = 0.1 and p11 = 0.2

r. We get the above distributions using Theorem 2.3 (see
Figure 2). The estimation of the parameters and the de-
termination of the exact decision criteria require further
combined research by Biomedical Engineers and Statisti-
cians.
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