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The Research of Hydromechanics Methods with
Changing Connectivity of the Mesh in Problems
with Large Deformations
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Abstract—A new automatic local remeshing method, based
on changing the connectivity of meshes, is presented in this
paper. When terminating computation in the Lagrangian
framework is due to computational grids with large
deformation problem, a remeshing phase in which a new grid is
defined is introduced, with a remapping phase in which the
Lagrangian solution is transferred (conservatively interpolated)
onto the new grids. The new meshes after the remeshing phase
is obtained so as to improve the mesh quality. If remeshing does
not help improve the mesh, we present a new automatic local
remeshing method, based on changing connectivity of the mesh,
which to handle geometric intersection, and leads to general
polygonal mesh. A series of numerical examples are presented
to demonstrate the performance of our new method
with the large deformation problems.

Index Terms—Automatic
connectivity of the mesh
deformation problem.

local remeshing, changing
geometric intersection, large

I. INTRODUCTION

In numerical simulation of multidimensional fluid flow,
the relationship of the motion of the computational grid to the
motion of the fluid is an important issue. There are two
choices typically; one is Lagrangian framework, another is
Eulerian framework. In the Lagrangian framework, the grid
moves with the local fluid velocity, while in the Eulerian
framework, the fluid flows through a grid fixed in space.
Lagrangian framework is adopted in compressible fluid
dynamics with multimaterial flows of high temperature and
high pressure popularly. The Lagrangian methods have the
natural advantage of well-resolved material interfaces, but
the lagrangian meshes maybe distort in large deformation
problems. The accuracy of the discrete scheme is reduced on
the distorted grid, and the computation even run termination
when the meshes distort too much. Therefore, the large
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deformation problem is one difficulty and focus in
Lagrangian methods, and the method to resolve the large
deformation problem is the front field in computational fluids
dynamic at present.

There are two reasons for the deformation of the
Lagrangian methods: one is the un-robust of the numerical
scheme, and the other is the grid evolution following the
fluids. Thus robust scheme must be studied to make the
Lagrangian method have strong adaptively, highly qualified
grid.

In this paper we present a new automatic local remeshing
method, based on changing connectivity of the mesh, which
is used to handle geometric intersection problem. The first is
an unstructured arbitrary polygonal mesh: the mesh is
defined by a collection of control nodes that are topologically
organized into cells. The mesh is unstructured in the sense
that individual cells may be constructed from an arbitrary,
non-uniform number of nodes. The second important aspect
is allowed connectivity of the mesh to be changed ( topology
transformations) during the numerical simulation. Including
topological operations such as splitting and elimination of
cells and edges and merging of cells. This approach has
successfully been implemented and is used in a number of 2D
codes of numerical analysis.

II. POLYGONAL MESHES AND MOTIVATION

We consider a two-dimensional computational

domain €2, assumed to be a general polygon. We assume a
mesh is given on €2, whose cells, {c}, cover the domain
without gaps or overlaps. Each cell may be a general polygon,
and is assigned a unique index that for simplicity will also be
denoted by c. The set of vertices (nodes) of the polygons is
denoted by {n}, where each node has an unique index n.
Then each cell can be defined by an ordered set of vertices.
We denote the set of vertices of a particular cell ¢ by N(c).
Further, we denote the set of cells that share a particular
vertex n by C(n). Note that each vertex may be shared by an
arbitrary number of cells and we denote connectivity of the
cell and node by CNL(n) and NCL(c). The connectivity of
thecell CNL(n) was be defined as an ordered set of nodes
of around the cell, the connectivity of the node NCL(c)
was be defined as an ordered set of cells of sharing the node
(see Fig. 1).

To motivate our research let us consider the problems
with large deformations; quality of cells degrades and may
become unacceptable for further calculation. Such as, in
numerical simulation of multidimensional fluid flow, it is
well known that the boundaries in the domain Q
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significantly changes and as time progresses, the boundaries

23 o 10: node number

o 4: cell number

]
Fig.1 Polygonal mesh and notations. The set of nodes for cell c=12 is CNL(C=12)={5,2,1,4}, and the set of cells sharing
node, n=39 is NCL (n=39)={1,8,4}

may become necessary to topologically disconnect some of
its regions or to remove singularities on the boundary. Here
“singularities” means thin, wedge-shaped boundary cells, or
intersection of cells and edges. If we allow connectivity of
the mesh to change in unacceptable position which leads to
general polygonal mesh. A quadrilateral cell can be local
remeshing using topological operations such as elimination
of cells and edges to triangles. This stage is described in
Section 3.

III. TOPOLOGY TRANSFORMATIONS

These transformations include rearrangement of the local
topology in order to arrive at a condition that will better admit
a topology to form good elements. Some of these
transformations have been described in other literature, but
are described here for handling geometric intersection
algorithm. Each of the following transformation have been
implemented as part of this research, the basic transformation
considered here are as follows.

A. Distinguishing intersection

A poor quality and unacceptable element need to pass
topological operations. Firstly, its concave-point is
distinguished using the vector product.

(R"‘/ B R”‘/—l ) % (R“f“ B Raf ) k

= Ra/_ —RaH ‘ RaM —Ra/_ sin @
X = Xg, Ty T, 0
N @ x“/ r”‘m N r“.f 0
0 0 1
- (xa./' B xajfl )(ro’ﬁI B ra/ ) B (Va/ B raffl )(xaﬁl B xaf )

3.1
Where K denotes unit vector in @ -direction, in 3D space
(x—r—6), k=(0, 0, l)T. @ is the angle between the
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vector (Ra_ —Ra_ 1 ) and the vector (Ra. 1 —Ra_ ) .
7 = JH 7

If (Ra/ —R’aH )><(R0t_+l —Ra/)-k <0, the node &,

J

is a concave-point in mesh-i . In Figure 2a the node & ;isa

concave-point in mesh-17 ; In Figure 2b the node a; isn’ta

concave-point in mesh-1, it is a convex-point in mesh-1 .

-1

(b)

Fig 2 concave-point and convex-point

Secondly, it is judged whether to intersect between any
two non-adjacent segments of the element. In Figure 3, if
following formula  3.2~3.5 is all satisfy, the line

a,; ; — «; andtheline &, — @, have been intersected.

(R, -R. )x(R., ~R,)k=0 3.2
(R, -R.)*(R,, -R,)k<0 33
(R, R, )*(R,-R,, ) k=0 34
;.
a, / .
a;
Fig. 3 intersections for two lines
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(R..,-R..)x(R, -R,, )-k=<0 3.5

We can base on concave-point in cell or intersection for
two lines; it is very easy to distinguish intersection for
fragment of the mesh in computing procedure. In Figure 4,

the concave-point « ;oat """ cuts across the edge

a, —> a,,, in mesh- i, then the mesh- i becomes the

intersection mesh. In this case, if any measure is not used
during numerical simulation, it leads to reduce the accuracy
of the discrete scheme or to terminate the computation.

sl &g Ry &y

- ek
T T

Fig. 4 intersection for two meshes

B. Changing connectivity of the mesh techniques

There is a very simple algorithm to handle intersection for
fragment of the mesh. This problem can be resolved by using
local changing connectivity of the mesh techniques

“topological” remeshing . “topological” remeshing may
be based on topological operations such as splitting and
elimination of cells and edges and merging of cells
optimization of poor topological quality mesh and further
transformation of unacceptable cells into good cells. Here
based on unstructured arbitrary polygonal meshes,
connectivity of the mesh to change in numerical simulation
are defined as lots of topological operations in our LAD2D
code, such as cut down edge to mesh-i on the left, cut down

edge to mesh- I on the right, big cut down edge to mesh-i on
the left, big cut down edge to mesh- on the right, merging or

refining to mesh-?, fracture on the node, normal fracture on
the common edge of two cells, and so on.

In Figure 5, when the node ¢, is equal to the node & i

(o, = a; ,1) of the mesh-i at t"”, the concave-point & ;

cut across the edge @, — @, ,, in mesh- (only neighbor
edge a, — a,,, with &, ), connectivity of the mesh- i to

change, which to eliminate edge & I
is defined as cut down edge to mesh-i on the left. From this
figure it is clear that topological is operation with logically

quadrilateral element was changed triangles element.

Ol

Fig. 5 cut down edge to mesh-i on the left

ISBN: 978-988-18210-8-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

-, of the mesh-1i,

In Figure 6, when the node ¢, is equal to the node
(a, =a;,,) of the mesh-i at 7 "1 the concave-point ¢ ;
cut across the edge &, — «,,, in mesh- [ (the other
neighbor edge o, — «,,, with &, ), connectivity of the

mesh-7 to change, which to eliminate edge .., > « ; of

Jj+l
the mesh- i, is defined as big cut down edge to mesh-i on the
left.

In Figure 7, when the node «, ,, is equal to the node & i

Fig. 6 big cut down edge to mesh-i on the left

(o, = a; ) of the mesh-1i at l"“, the concave-point & ;
cut across the edge &, — «,,, in mesh-i (only neighbor
edge a, — a,,, with &, ), connectivity of the mesh- i to

change, which to eliminate edge & T of the mesh-1i,

is defined as cut down edge to mesh-i on the right.

Ctya G
]
6] ST
e gy Cha
1) —

Fig. 7 cut down edge to mesh-i on the right

In Figure 8, when the concave-point & jatt "1 cut across
the edge a, — «,,, in mesh- i , connectivity of the

mesh- i to change, which to eliminate edge @, ,, —> @, of
the mesh-7, is defined as merging to mesh-i , and which to
refine edge «,,, —> a, of the mesh- ! | is defined as

refining to mesh-i.

The proposed method of automatic local remeshing is
implemented as a dynamic link library. In case of remeshing,
the calling program receives information on all removed,
changed and new nodes and cells and also on intersections of
new and old cells which are needed for rezoning.

After topological operations Lagrangian solution is
transferred  conservatively interpolated from some

polygonal meshes to another.

IV. NUMERICAL TESTS

In this section, we present the numerical results obtained
from the Lagrangian adaptive hydrodynamics code in 2-D
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space (LAD2D)[2]. LAD2D is a software project based on
an explicit Lagrangian finite difference scheme with models

The equation of state of gas is used with p = ( Y- 1) pe , the

Cljag

Ok {a. merging to mesh-1 :I

ey
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Ohka i(h. refining to mesh—i)
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ey

Fig. 8 merging or refining to mesh-i

of clasto-plasticity, material damage and detonation, using
the above method.

The first test is the simple test case in planar geometry, and
separates the air-region in the computational process. Most of
the methods was not natural simulated this problem. The
second is a “Diffraction of a detonation wave behind a
backward-facing step” problem in r-z-axisymmetric
geometry. It is often numerical simulation in order to validate
the predictive capabilities of the new method-we compare
numerical results with experimental data.

A. The simple test case

Let’s consider the simple problem with breaking of region
in planar geometry. This problem is a two layers material

problem. The computational domain is
Q= [0; 1 .O] X [0;0.12] as described in figure 9. The lower
layer is a ideal gas, The gas-region is

Q= [O;I.O]X[O;O.l] , The wupper layer is a
iron-metal(Fe), The region is Qge = [0;1.0] X [0. 1 0.12] ,
the initial densities are p, =0.0129, p, =7.85 , the

initial pressures are p, = 0.1, p, =1.0, the initial velocity

is zero in gas-region, the initial velocity is a distribution in the
Fe-region as described by formula :

u=0.0

if 01<x<0.5
v=20.0%J(x—0.1)> +(y—0.1)°
u=0.0

if 05<x<0.9
v:20.0*\/(0-9_x)2+(y_0'1)2 g

Cag Fe
> ¥,

N .
_

Fig. 9 Schematics and meshes and initial condition of
model

*Lacal araplify
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adiabatic constant ¥ = 1.4 .The equation of state of
iron-metal(Fe) is used with p = (}/ - 1) pe+ Cé (p—py)-
Where y =4.075 ¢, =4.2km/s

Figure 10 shows the process of automatic separating in gas
layer. Begins iron-metal is getting fell until it meet the
boundary of gas, then the gas region is separated into two
parts using automatic local remeshing techniques. From the
figures it is clear that the connectivity of the mesh is changed.

B. Diffraction of a detonation wave behind a backward -

facing step

Diffraction of a detonation wave behind a
backward-facing step is one of the fundamental topics in
shock wave dynamics and is studied extensively by many
researchers. Here It is numerical simulation in order to
validate the predictive capabilities of the new automatic local
remeshing method, based on Lagrangian methods, for
problems with large deformations.

This problem models is a detonation wave propagating
through the channels with suddenly expending section. The
left is a little section channels, the right region is a large
section channels. Initially, the region between the inlet and
the end of the reaction zone is taken to be at the CJ state. The
walls of the channel are held rigid, and a no-reflection
boundary condition is applied at the outlet. The
computational domain is {2 as described in figure 11. O is
split into two regions filled with the explosive PBX9404 with

parameters K=2.996, D, =8.88 km/s, p,=1.84g/cm3. The
left region is €, = [0;3.0]x[0;0.5], The right region is
Q, = [3.0;6.0] X [0;3.0] . The driver section is in the left

part of the (), , the top boundary condition is a rigid; the

bottom boundary condition is a axially symmetric.
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!ocal a4m 1
« p

(a) no separating of the gas-region

ocal ampli

(b) separating of the gas-region

Fig. 10 the process of automatic separating in gas layer

Little section channels
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Fig. 11 The computing model and initial meshes

® Reaction rate function
In numerical simulation of detonation, combustion
function F means the extent of explosive reaction. Three
zones are distinctly distinguished (see Figure 12 ).

Burning
(0<F<1)

al

no burnin
(F=0)

Fig. 12 Process of explosive reaction with
combustion function F

Combustion function F is F :[maX(Fi,Fz)Tb ,

where Wilkins function £ is

0, no  burning
F=1(1-V)/(1-7,), burning
1, burn  finished
C-J burn function F, is
0, t<t,
F,=4(t-1,)/AL, t,<t<t,+AL >
L t>t, +AL

Where V, =y/ (}/—1) denotes specific volume; t is

current  time; #, is the time;

AL=rAR/D,, AR is cell width; D, is the constant

burn-beginning

speed of propagation of the front; #,,7, are adjustable

parameters.
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® Equation of state
The equation of state of the explosive is used with the
Jones-Wilkins-Lee JWL

p= Aexp(—RlV)Jr BeXp(—RZV)Jra;/—E

Where V' = p, / p, E = p,e, the INL equation of state

parameters for the non-reacted explosives and their reaction
products are used with A4=852.4GPa

B=18.02GPa R =46 R, =13 w=0.38.

® Results and discussion
The first, a steady CJ detonation wave propagates through

the narrow segment unit diffraction around a 90° corner,
begins its travel through the narrow channel as a steady,
undisturbed wave. It first senses a change in geometry upon
arriving at the corner. As the detonation wave rounds the
corner, the diffraction and re-initiation of detonations behind
a backward-facing step generated spherical detonation wave.
The detonation wave is weakened to deflagration partly in
initial the large section channels according to detonation
wave diffraction. The slip line could be formed, and the
Mach reflection of detonation wave had occurred when the
detonation wave interact with the wall. As time elapses, near
the line of symmetry (bottom boundary of the computational
domain) was reflected wave interacts with the back-face of
the step where a vortex exists, the wave becomes planar and
the reflection on the wall transits to a Mach reflection and the
reflected wave reflects off the upper wall again. Figure 13

shows the mesh in the 90° corner. From this figure it is clear
that topological is operation with logically quadrilateral
element was changed triangles element. The mesh is so high
deformation in near the corner that pure Lagrangian schemes
eventually fail.

Figure 14 shows the computing mesh (upper) and density
contours (lower) at three times. Diffraction through the
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90° corner also generates a stronger corner vortex. We
compare numerical results with experimental data by using
high-speed schlieren photography[6], which conforms
qualitatively.

e,
i
F1H

U
et
i,
i
(LTI TR I STINT

Fig.13 Meshes in a time during numerical simulation

V. CONCLUSIONS

We have presented a new automatic local remeshing
method, based on changing connectivity of the mesh. It
includes two main elements.

An unstructured arbitrary polygonal mesh system is
defined, and a Lagrangian phase with finite volume methods
in which the solution on polygonal mesh is updated.

The automatic local remeshing method is defined using
topology transformations techniques. It allows the change of

mesh connectivity, and Lagrangian solution is transferred
(conservatively interpolated) from some polygonal meshes to
another.

A series of numerical examples is presented to
demonstrate the robustness of our method is robust in large
deformation problems, and show the predictive capabilities
of the new automatic local remeshing method.

We recognize that our new method requires more testing,
which is the remaining work in the future.
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Fig. 14 The computing mesh (upper) and density contours (lower)
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