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Abstract— A new parallelepiped finite element, simple and 
effective baptized SBP8C (Strain Based Parallelepiped 8-nodes 
Condensed) is presented in this paper. It is formulated by the 
use of the static condensation, contributing to enrich the 
existing finite elements library. This element can be used for 
the analysis of three dimensional problems and also for the thin 
and thick plates bending. Tests on standard problems have 
been examined. This element has a better performance 
compared to the one based on the displacement model. 

 
Index Terms— Parallelepiped Element, Three-dimensional 

Elasticity, Strain Approach, Plate Bending, Static 
condensation.  

I. INTRODUCTION 

Numerous studies, theoretical and numerical were 

dedicated to the bending plate. Numerically, the calculation 

of the thick plate with 3D finite elements has been examined 

by several authors, references [1] and [2 ] used these elements 

by maintaining 3D constants, let us quote for example the 

brick with twenty nodes, B20 and bricks without 

intermediate nodes following thickness. According to these 

authors, 3D elements give good results in this last case, but 

do not approach known solutions for the thin plates [3]. The 

major inconvenience in the use of these elements of superior 

order is the high cost because of the large number of points of 

numeric integration necessary for the exact evaluation of the 

element stiffness matrix.  

  The objective of this paper, is to present a new 

parallelepiped finite element, simple and effective baptized 

SBP8C (Strain Based Parallelepiped 8-nodes condensed), 

contributing to enrich the existing finite elements library. 

This last one is formulated, by the use of the static 

condensation, not only for the study of the 3D problems but 

also and especially for the thin and thick plates bending.   

 

II. DESCRIPTION OF THE SBP8C ELEMENT [4]   

Figure 1 shows the geometry of the element SBP8C and 

the correspondent kinematic variables. Each node (i) is 

attributed the three degrees of freedom (d.o.f) Ui, Vi and Wi.  
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Fig.1. Geometry of the element "SBP8C"  
   

III. ANALYTICAL FORMULATION OF THE SBP8C ELEMENT    

A. Displacement field 

For a linear theory where the strains are small, there are 

six strain components occurring in completely 3D analysis. 

    

xx = U,x      xy =  U,y + V,x            (1 a,b) 

yy  = V,y      yz =  V,z + W,y            (1 c,d) 

zz = W,z      xz =  W,x + U,z             (1 e,f) 

U, V and W: are the displacements in the three directions 

X, Y and Z respectively. 

Equations (2) represent the condition of the rigid body 

modes (RBM). We have: 

ii = 0                                                                 (2a) 

ij = 0                                                                 (2b) 

By integrating equations (2), we obtain a particular 

solution: 

UR  = a1 + a4 y + a6 z                                 (3a) 

VR  = a2 - a4 x - a5 z                                 (3b) 

WR = a3 + a5 y - a6 x                                 (3c) 

Equations (3) represent the displacement fields 

corresponding to the rigid body modes (RBM). 

The present element is an eight parallelepiped node in 

addition to the central node, with three degrees of freedom by 

node (Fig.1). Therefore, the field of displacement has to 
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contain twenty-seven independent constants. Six of them (a1, 

a2 ... a6) are already used to represent the RBM, so the 

remaining twenty-one (a7, a8 ... a27) represent in a rough way 

strains in the element, while verifying the six equations of 

compatibility. The strain field is: 

εxx = a7 + a8 y + a9 z + a10 yz + a25 x   (4a)

εyy = a11 + a12 x + a13 z
 + a14 xz + a26 y   (4b)

εzz  = a15 + a16 x + a17 y + a18 xy+ a27 z   (4c)

γyz =  – a10 x
2 – a19+ a20 x+ a22 x    (4d)

γxz = – a14 y
2+ a21 + a22 y + a24 y    (4e)

γxy = – a18 z
2 + a20 z+ a23 + a24 z    (4f)

Substituting equations (2) and (4) into (1) and solving the 

resulting differential equations gives: 

 

U = a1 + a4 y + a6 z + a7 x + a8 xy + a9 xz + a10 xyz 
      – 0.5 a12 y

2 – 0.5 a14 y
2z  – 0.5 a16 z

2 – 0.5 a18 yz2 
      + 0.5 a21 z  + 0.5 a23 y + a24 yz + 0.5 a25 x

2   
 

 

(5a)

 V =  a2 – a4 x – a5 z – 0.5 a8 x
2 – 0.5 a10 x

2 z + a11 y 

     + a12 xy + a13 yz + a14 xyz  – 0.5 a17 z
2 – 0.5 a18 xz

     + 0.5 a19  z  + a20 xz + 0.5 a23 x + 0.5 a26 y
2   

 

 

(5b)

 W = a3 + a5 y – a6 x – 0.5 a9 x
2 – 0.5 a10 x

2y   

        –  0.5 a13 y
2  – 0.5 a14 xy2 + a15 z  + a16 xz  

        + a17 yz + a18 xyz + 0.5 a19  y  + 0.5 a21 x  

        + a22 xy + 0.5 a27 z
2   

 

(5c)

It should be noticed here, that the final displacement 

functions contain quadratic terms so allowing the change of 

curvature. The parallelepiped element having the 

displacement fields given by equations (5) is referred to as 

SBP8C. The classic element based on the displacement 

model will be referred to as DBB8.  

B. Evaluation of the element stiffness matrix  Ke 

The evaluation of the element stiffness matrix is 

summarized with the evaluation of the following expression: 

 

                1
0

1  AKAK
T

e                                  (6)                 

Where  

                 dydzdxQQK
v

.D
T

0                             (7) 

With  

Since [A] and its inverse can be evaluated numerically, the 

evaluation of the integral (7) becomes the key of the problem. 

While the shape of the element is regular, numerical 

integration is reduced to an analytical integration [4]. 

C. Mechanical characteristics of the material  

The matrix (9) is a modified form of the material matrix 

properties by introducing the plane stress constants and a 

corrective coefficient of transverse shearing (TS) noted K [5]. 
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E is the modulus of elasticity; ν is the Poisson's ratio 

K= 2/12    in Uflyand-Hencky-Mindlin's theory   

K= 5/ 6      in Reissner's theory 

IV. NUMERICAL EXAMPLES 

The performance of the present element SBP8C is 

estimated through a series of standard tests to show the 

interest of the strain model. The peculiarity of these examples 

lies generally, on one hand, in their geometrical simplicities, 

and on the other hand, in their very varied behaviour toward 

the phenomenon of locking in transverse shearing (TS). 

These two aspects make these examples an ideal tool for the 

validation of new models of finite elements. 

A.  Plate patch tests 

In plate problems, the importance of the patch tests is 

paramount [1]. A number of popular numerical problems 

mainly extracted from the proposed standard set of problems 

by White and Abel [6]. All reference solutions are taken from 

the same paper unless stated otherwise. 
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1)  Constant bending moment patch test for plates 

The response of single element cantilever to a constant 

bending moment applied as shown in Fig.2(c) is considered. 

Vertical deflections at the tip of the plate are calculated. It is 

seen in Table I that the SBP8C shows the same tip deflection 

as theory and gives more accurate results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.2. Plate patch tests (P = 1.0); Mesh :( a) regular 1x1; (b) regular 3x3. 
         (c) Constant bending moment test; (d) Out-of-plane shear load test 

 
 

TABLE I: CONSTANT BENDING MOMENT PATCH TEST FOR PLATES 
 

 Tip deflection W (x 10-1) 

Mesh Theory PN30 

[7] 

ANSYS SBP8C 

1 x 1 0.12 0.1092 0.1092 0.12 

3 x 3 0.12 0.1106 0.1092 0.12 

2)  Out-of-plane patch test for plates 

We use the same meshes as in previous section. The 
boundary conditions and end shear loading used are shown in 
Fig.2 (d). The solutions obtained are shown in Table II. It is 
seen for the SBP8C that the results are satisfactory and 
convergence to the analytical solution is obtained as the 

number of elements used is increased. 

TABLE II: OUT-OF-PLANE PATCH TEST FOR PLATES 

 Tip deflection W (x 10-1) 

Mesh Theory PN30 [7] ANSYS SBP8C 

1 x 1 0.16 0.132 0.121 0.1268 

3 x 3 0.16 0.151 0.147 0.1459 

B.  Simply Supported Square Plate 

The test of the simply supported square plate is examined 
with either a uniform loading (q = 1) or with a concentrated 
load (P = 1) at the centre (Fig.3). The quarter of the plate is 
divided into a mesh of N x N elements. The convergence tests 
are carried out on two different L/h ratios of 10 and 100 for 
thick and thin plates respectively. The results for the central 
deflection are given in Table III and Table IV. The effect of 
L/h ratio on the deflection at the centre WC for a plate is 
studied. The results presented in Table V are given for the 
12x12 meshes in terms of WC/Wk where Wk is the reference 

Kirchhoff solution [1] for thin plates. 
 
 
 
 
 
      L 

 
 
 
 
 
 
 

 
Fig.3: Simply supported square plate 

(L = 10, h = 1. or 0.1, E =10.92,  = 0.25) 

 
The numerical tests show that: 

- The strain based element SBP8C has quite rapid rate of 

convergence to reference solutions for both thick and thin 

plates. 

- The SBP8C element is free from any shear locking since 

it converge to the Kirchhoff solution for thin plates, 

contrarily for the corresponding displacement based element 

DBB8  

- SBH8 and SBP8C have similar behaviour, and they have 

the advantages to be valid for both thin and thick plates. 

- The influence of the transverse shear for the strain based 
elements is much more important for plates with 
concentrated load than for those with uniform load.  
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Table III: Central deflection of a simply supported plate with a uniform load 

 

4qL

wD
x100 

 L/h=10 L/h=100 

Mesh SBP8C SBH8 [8] DBB8 
  

SBP8C SBH8 [8] DBB8 

2 x 2 0.3812 0.326 0.2283 0.0349 0.0523 0.0045 

4 x 4 0.4218 0.4048 0.351 0.2563 0.3081 0.0171 

8 x 8 0.4229 0.4145 0.3982 0.3856 0.3883 0.0582 

12 x 12 0.4270 0.4249 0.4171 0.4033 0.4029 0.0786 

Exact solution [9] 0.427 0.406 

 
TABLE IV: CENTRAL DEFLECTION OF A SIMPLY SUPPORTED PLATE WITH A CONCENTRATED LOAD 

 

2PL

wD
x100 

 L/h=10 L/h=100 
Mesh SBP8C SBH8 [8] DBB8 SBP8C SBH8 [8] DBB8 
2 x 2 1.1745 0.9907 0.7269 0.113 0.1452 0.0134 
4 x 4 1.321 1.243 1.097 0.789 0.8387 0.0481 

8 x 8 1.363 1.333 1.289 1.108 1.115 0.1636 
12 x 12 1.372 1.364 1.344 1.152 1.145 0.2269 

Kirchhoff solution [9]  1.16 
Ref. [2] 1.346  

 
TABLE V: INFLUENCE OF L/H ON THE CENTRAL DEFLECTION FOR SIMPLY SUPPORTED PLATES 

 Wc/Wref 

 Uniform load Concentrated load 

L/h SBP8C SBH8 [8] DBB8 SBP8C SBH8[8] DBB8 
5  1.2067 1.2024 1.2016 1.739 1.7317 1.7338 

10 1.0522 1.0466 1.0273 1.1866 1.1759 1.1586 

20 1.0143 1.0074 0.9206 1.0456 1.0363 0.9473 

40 1.0019 0.9975 0.7027 1.0086 1.0008 0.6987 

50 1.000 0.996 0.6000 1.0038 0.9959 0.5919 

100 0.9931 0.9924 0.1936 0.9895 0.9871 0.1956 

Wref 0.406x10-2qL4/D 1.16x10-2PL2/D 

V. CONCLUSION  

           The present element (SBP8C) passes the plate 

patch tests. Numerical results obtained using this element 

tends to agree well with those from other investigations and 

theoretical results for both thin and thick plates. The 

robustness of the present element was demonstrated. The 

plate bending can be very well simulated with a simple 

parallelepiped element (SBP8C) based on the strain 

approach.  

The performance of this element has been demonstrated in 

plate bending, and the advantages of using the strain 

approach are again confirmed. 
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