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Abstract— Consideration is given to a discrete-
time queueing system with inverse discipline,
service interruption and resumption, second-order
geometrical demand arrival, arbitrary (discrete)
distribution of demand length and finite storage.
Each demand entering the queue has random volume
besides its length. The total volume of the demands
in the queue is limited by a certain number. Formulae
for the stationary probabilities of states and the
stationary waiting time distribution in the queuing
system are obtained.
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1 Introduction

In many service facilities, in particular in modern
informationand computer complexes, along with the
restriction on the total volume of demands the
restrictions on other parameters are assigned as well. The
most common situation occurs when each demand has
some random volume (for instance, each program requires
a certain memory size for its performance) and the newly
arriving demands can be accepted for serving only in case
when their volume does not surpass resources available in
the server.

Despite doubtless importance of researching queueing
systems (QS) with the restriction on the total volume
of demands, there are very few works devoted to
development of analytical methods of calculation of such
systems ([1], [2], [3]). This happens because, for a correct
construction of a Markovian process, one should take into
account the volumes of all the demands in the system that
in a sense makes QS with restriction on the total volume
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of demands related to multilinear QS (studying of the
latter system also meets similar difficulty).

However, if we consider the inversion service order
(LIFO) in the systems with the restriction on the total
volume of demands, then, as was shown in [4], [5], [6], it
would be possible to receive suitable-to-use algorithms
for the calculation of stationary characteristics. In
these works three variants of LIFO discipline were
considered: disciplines with service interruption and
service resumption, with service interruption and repeat
again service, and without service interruption. Besides,
in [7] the results of calculations performed on the basis
of the obtained formulae were presented.

It should be noted that all the quoted papers examined
continuous-time QS while one of the distinctive features
of modern information-telecommunication systems is
the universal implementation of digital technologies
which generates a need for studying discrete-time QS.
Studying discrete-time queueing systems in many cases
involves additional difficulties related to the possibility
of simultaneous occurrence of several events.

In the present article consideration is given to QS
Geom/G/1/n with LIFO discipline functioning in
discrete time and restriction on the total volume of
demands, which is similar to QS Ml/G/1/n functioning
in the continuous time and which was described in [6].
The relations are obtained allowing the calculation of the
basic stationary characteristics of this system.

2 System description

Let us consider a unilinear discrete-time QS
Geom/G/1/n with n, 0 ≤ n < ∞, waiting spaces,
and with second kind Geometrical input flow, i.e. a
demand flow with am, 0 ≤ m ≤ n + 1, the probability
of a demand arrival during a time slot depends on the
number m of demands residing in the QS just before the
slot begins.

Each demand arriving in the system along with its length
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has random positive volume. Joint distribution of the
demand length and volume is defined by the probability
Bk(x) of the event that the demand length (the number
of service time slots) is equal to k, k ≥ 0, and its volume
does not exceed x. We shall assume the fulfillment of
natural condition that the length of the demand cannot
be equal to zero i.e. B0(x) = 0 for any x. For the sake of
simplicity we shall suppose that for each k, k ≥ 1, there
exists the derivative bk(x) = B′

k(x) (the density function
of the volume).

The total volume of demands in the queueing system is
limited by a (nonrandom) number Y , 0 < Y < ∞. If the
aggregate volume of arriving demand and the demands
in the system exceeds Y , then the arriving demand will
be lost. The arriving demand will be necessarily lost also
if at the moment of arrival it finds in the queue n other
demands (and in this moment the demand serving is not
finished at the server ). For definiteness we shall assume
that if at the moment of a new demand arrival the served
demand leaves the queuing system, then its volume will
be disregarded while defining the aggregate volume.

The inversion service order with service interruption and
resumption is realized in the system whereby a demand
accepted by the queuing system is directed to the server
and drives out the demand being served to the beginning
of the queue. In particular, if at the moment of new
demand arrival the served demand leaves the system,
then upon availability of free volume a new demand is
directed to the server. The service of an interrupted
demand will be resumed.

3 Stationary probabilities of conditions

Denote the stationary probability of absence of demands
in the queuing system through p0. Let pk,i(y1, . . . , yi),
i = 1, n + 1, k ≥ 0, be the stationary density of
probabilities (with arguments y1, . . . , yi) of the event that
there are i demands in the system, and the (served)
length and the volume of the demand at the server are
equal to k and y1 respectively, and the volumes of other
demands situated in the system are equal (in order of the
queue) to y2, . . . , yi.

As the total amount of demands situated in
the system ranges between 0 and Y , then
pk,i(y1, . . . , yi) = 0 at (y1, . . . , yi) �∈ Di, where Di

is a simplex limited by hyperplanes yk = 0, k = 1, i,
and y1 + . . . + yi = Y . Therefore, without paying
special attention to it we shall assume henceforth
(y1, . . . , yi) ∈ Di, i = 1, n + 1.

Let also:

b(y) =
∞∑

k=0

bk(y) be the density function of the demand

volume distribution;

B(y) =
y∫
0

b(u) du =
y∫
0

∞∑
k=0

bk(u) du =
∞∑

k=0

Bk(u) be the

demand volume distribution function;

b(k|y) = bk(y)/b(y), k ≥ 1, be the conditional probability
that demand length is equal to k given that its volume is
equal to y;

B(k|y) =
∞∑

i=k

b(i|y), k ≥ 1, be the conditional probability

that the demand length is no less than k given that its
volume is equal to y;

β(s|y) =
∞∑

k=1

skb(k|y) be the generating function of the

demand length given that its volume is equal to y;

my =
∞∑

k=1

kb(k|y) =
∞∑

k=1

B(k|y) be the conditional

mathematical expectation of the demand length given
that its volume is equal to y.

Since for the QS under discussion the necessary and
sufficient condition of the stationary mode existence has
a complicated form, we will bring forward the following
simple sufficient condition: my ≤ C < ∞.

By using the method of states elimination (see. [8], p. 22),
we obtain the system of equations

pk,i(y1, . . . , yi) =
B(k + 1|y1)

B(k|y1)
pk−1,i(y1, . . . , yi),

i = 1, n + 1, k ≥ 1, (1)

with the initial condition

p0,1(y1)

= a0b(y1)p0 + a1b(y1)

Y∫
0

∞∑
k=1

b(k|y)
B(k|y)

pk−1,1(y) dy, (2)

p0,i(y1, . . . , yi)

= ai−1b(y1)
∞∑

k=1

B(k + 1|y2)
B(k|y2)

pk−1,i−1(y2, . . . , yi)

+ aib(y1)

Y −y2−...−yi∫
0

∞∑
k=1

b(k|y)
B(k|y)

pk−1,i(y, y2, . . . , yi) dy,

i = 2, n + 1. (3)

From equations (1) we deduce:

pk,i(y1, . . . , yi) = B(k + 1|y1)p0,i(y1, . . . , yi),

i = 1, n + 1, k ≥ 1. (4)
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By plugging into the initial conditions (2) and (3) their
values from formula (4) instead of pk,i(y1, . . . , yi), i =
1, n + 1, k ≥ 1, we obtain:

p0,1(y1) = a0b(y1)p0 + a1b(y1)

Y∫
0

p0,1(y) dy, (5)

p0,i(y1, . . . , yi) = ai−1b(y1)(my2 − 1)p0,i−1(y2, . . . , yi)

+ aib(y1)

Y −y2−...−yi∫
0

p0,i(y, y2, . . . , yi) dy,

i = 2, n + 1. (6)

Solving equations (5) and (6), we obtain:

p0,1(y1) =
a0b(y1)

1 − a1B(Y )
p0, (7)

p0,i(y1, . . . , yi)

=
ai−1b(y1)(my2 − 1)

1 − aiB(Y − y2 − . . . − yi)
p0,i−1(y2, . . . , yi),

i = 2, n + 1. (8)

Therefore, formulae (7), (8) and (4) allow to calculate
recurrently by i from i = 1 up to n + 1 the stationary
probability densities pk,i(y1, . . . , yi), i = 1, n + 1, k ≥ 0,
accurate to the stationary probability p0; implementation
of normalization condition is required for defining p0:

p0 +
n+1∑
i=1

∫
. . .

∫
y1+...+yi≤Y

∞∑
k=0

pk,i(y1, . . . , yi) dy1 · · · dyi

= p0 +
n+1∑
i=1

∫
. . .

∫
y1+...+yi≤Y

my1p0,i(y1, . . . , yi) dy1 · · · dyi = 1.

(9)

As a rule for practical calculations it is sufficient to know
only the volume of the demand at the server and the
aggregate volume of all demands situated in the queue.
Then denoting by

pk,i(y, z) =
∫

. . .

∫
y3+...+yi≤z

pk,i(y, z − y3 − . . .− yi) dy3 · · · dyi,

i = 3, n + 1, k ≥ 0,

the stationary density of the probability that there are
i demands in the system where the (served) length and
volume of the demand at the server are equal to k and
y respectively while the total volume of the demands
situated in the system is equal to z, we use the same
reasoning as before and obtain

pk,i(y, z) = B(k + 1|y)p0,i(y, z), i = 3, n + 1, k ≥ 1,

where

p0,i(y, z) =
ai−1b(y)

1 − aiB(Y − z)

z∫
0

(mu−1)p0,i−1(u, z−u) du,

i = 3, n + 1.

The recurrent procedure of defining pk,i(y, z) (in view of
formula (7) and also formulae (8) at i = 2 and (4) at
i = 1, 2) remains the same. The normalization condition
(9) takes the form:

p0 +

Y∫
0

myp0,1(y) dy +
n+1∑
i=2

∫ ∫
y+z≤Y

myp0,i(y, z) dy dz = 1.

Let us also put down the expressions for some
stationary characteristics related to the stationary state
probabilities. The stationary density of probabilities
pi(y), i = 2, n + 1, that there are i demands in the system
having the total volume y is given by the formula

pi(y) =

y∫
0

mzp0,i(z, y − z) dz, i = 2, n + 1.

The stationary probability a of demand arrival at a time
slot (the demand may be rejected by the system because
of the restriction on the volume) takes the form

a = a0p0 +
n+1∑
i=1

ai

Y∫
0

pi(y) dy.

The stationary density of probabilities p∗k,1(y), k ≥ 1,
that the arriving demand (which won’t be necessarily
accepted by the system) will find in the system one
demand of (served) length k and volume y, and the
stationary density of the probabilities p∗k,i(y, z), i =
2, n + 1, k ≥ 1, that the arriving demand will find
in the system i other demands, where the length and
volume of the demand at the server are equal to k and y
respectively, and the aggregate volume of other demands
residing in the system is equal to z, are determined by
the expressions:

p∗k,1(y) = B(k + 1|y)p0,1(y) = pk,1(y), k ≥ 1,

p∗k,i(y, z) = B(k + 1|y)p0,i(y, z) = pk,i(y, z),

i = 2, n + 1, k ≥ 1.

The stationary probability p∗0 that at the moment of
a new demand arrival the server will finish serving a
single demand situated in the system, and the stationary
density of probabilities p∗i (y), i = 0, n, that at the
moment of new demand arrival the server will finish
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serving a demand, and i other demands with the total
volume y will remain in the system, are given by the
formulae

p∗0 =

Y∫
0

p0,1(z) dz,

p∗i (y) =

Y −y∫
0

p0,i+1(z, y) dz, i = 1, n.

The stationary probabilities πy (y < Y ) and π that the
arriving demand of volume y and the arriving demand
of arbitrary volume will be admitted to the system, have
the form

πy =
1
a

⎛
⎝a0p0 + a1p

∗
0 +

n∑
i=1

ai+1

Y −y∫
0

p∗i (z) dz

+ a1

Y −y∫
0

(mz − 1)p0,1(z) dz

+
n∑

i=2

ai

∫ ∫
z+u≤Y −y

(mz − 1)p0,i(z, u) dz du

⎞
⎠ ,

π =
1
a

⎛
⎝(a0p0 + a1p

∗
0)B(Y )

+
n∑

i=1

ai+1

Y∫
0

B(Y − y)p∗i (y) dy

+ a1

Y∫
0

B(Y − y)(my − 1)p0,1(y) dy

+
n∑

i=2

ai

∫ ∫
y+z≤Y

B(Y − y − z)(my − 1)p0,i(y, z) dy dz

⎞
⎠ .

4 Stationary distribution of demand stay
time in the system

In this section we shall present a calculation algorithm
in terms of the generating function of the stationary
distribution of the demand sojourn time in the system.
We shall call an (i, z)-system a system similar to the
initial one, but with n − i, 0 ≤ i ≤ n, waiting places,
restriction z, 0 ≤ z ≤ Y , on the total volume of demands
and probability âm = am+i, m = 0, n − i + 1, of demand
arrival at time slot given there are m demands in (i, z)
system. It is easy to see that an (i, z)-system represents
the initial queueing system but with the reqirement that
it permanently contains i demands with the total volume
Y − z.

It is convenient to consider that the busy period (BP) of
an (i, z)-system ends at the moment of departure of the
demand which had been the first at the server, even if at
the same time a new demand is arriving in the system.
Besides, we will consider that if a new demand having
the volume greater than z arrives in the free (i, z)-system
then it opens the BP of zero length.

Let:

ϕ(s|k, y; i, z), i = 0, n, k ≥ 1, be the generating function
of BP of (i, z)-system opened by the demand of (residual)
length k and volume y;

ϕ(s|i, z), i = 0, n, be the generating function of BP of
(i, z)-system opened by the demand of arbitrary length
and arbitrary volume.

Then for ϕ(s|k, y; i, z) and ϕ(s|i, z) the following
recurrent relations are valid:

ϕ(s|k, y;n, z) = sk, k ≥ 1, y ≤ z,

ϕ(s|k, y; i, z) = 1, k ≥ 1, y > z, i = 0, n,

ϕ(s|n, z) =
∞∑

k=1

∞∫
0

ϕ(s|k, y;n, z)bk(y) dy

= 1 − B(z) +

z∫
0

β(s|y)b(y) dy,

ϕ(s|k, y; i, z)

= sk
k−1∑
l=0

(
k − 1

l

)
alak−1−lϕl(s|i + 1, z − y)l

= sk(a + aϕ(s|i + 1, z − y))k−1,

k ≥ 1, y ≤ z, i = 0, n − 1,

ϕ(s|i, z) =
∞∑

k=1

∞∫
0

ϕ(s|k, y; i, z)bk(y) dy

= 1 − B(z) +

z∫
0

β(s(a + aϕ(s|i + 1, z − y))|y)
a + aϕ(s|i + 1, z − y)

b(y) dy,

i = 0, n − 1.

Finally, denoting the generating function of sojourn time
of the demand with length k and volume y (y ≤ Y )
accepted for serving by g(s|k, y), and the generating
function of sojourn time of arbitrary demand accepted
for serving by g(s), we obtain the following result:
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g(s|k, y) =
1

aπy

(
(a0p0 + a1p

∗
0)ϕ(s|k, y; 0, Y )

+
n∑

i=1

ai+1

Y −y∫
0

ϕ(s|k, y; i, z)p∗i (z) dz

+ a1

Y −y∫
0

(mz − 1)ϕ(s|k, y; i, z)p0,1(z) dz

+
n∑

i=2

ai

∫ ∫
z+u≤Y −y

(mz−1)ϕ(s|k, y; i, z+u)p0,i(z, u) dz du

)
,

k ≥ 1,

g(s) =
1
π

∞∑
k=1

Y∫
0

πybk(y)g(s|k, y) dy.

It is obvious that in the queueing system under
consideration the waiting time for the start of a demand
serving is equal to zero, and the sojourn time of a demand
at the server (taking into account possible interruptions
of service) coincides with the total sojourn time of a
demand in the system.
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