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Explicit Group Iterative Methods for the
Solution of Telegraph Equations

Kew Lee Ming and Norhashidah Hj. M. Ali

Abstract—In this paper, we present a preliminary study of
the formulation of two new explicit group relaxation methods
for the difference solution of the two dimensional second order
hyperbolic telegraph equations. The methods are derived from
the standard centred and rotated five-point finite difference
discretisations. Their computational complexity analysis is
discussed. Numerical experimentations are also conducted to
demonstrate the viability of the explicit group formulations.

Index Terms—computational complexity analysis, finite
difference method, group explicit method, telegraph equations.

. INTRODUCTION

Explicit group methods for solving the two dimensional
elliptic and parabolic equations using finite difference
schemes have been extensively investigated over the years
[1]-[6]. The advantages of using these methods are easier
implementation and lesser execution timings requirements
than the point iterative methods. These methods are also
favorable in parallelism due to their explicit nature.

In recent years, numerous methods have been introduced
in the literature for numerical solution of one- and two-
dimensional hyperbolic equations [7]-[15]. In particular [10],
an implicit three-level scheme was developed by Mohanty
while Evans [7] implemented explicit group methods for the
nonlinear convection equation.

In this paper, we introduce new explicit group methods for
the solution of the two dimensional second order hyperbolic
equation which is commonly encountered in physics and
engineering mathematics. In the next section, we will give an
overview of the formulation of the explicit group methods
followed by the computational complexity analysis in
Section Ill. The numerical experiments and the results are
presented in Section IV. Finally, concluding remarks is given
in Section V.

Il. THE GROUP ITERATIVE METHODS

In this section, we briefly introduce the explicit group
methods for the two dimensional second order hyperbolic
equations based on two finite difference approximations,
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specifically the standard and the rotated point iterative
approximations.

Consider the two dimensional second order hyperbolic
equation (telegraph equation) defined in the region
Q={(x,y,t)]0<x,y <1t >0} of the following form:
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where a(x, y,t) > 0, B(x, y,t) > 0, A(x, y,t) > 0,B(x, y,t) > 0.
The initial and boundary conditions are given by

ou
U (X, y70) = fl(X, y)ig()“ Y, 0) = fz(X’ y)

u@,y,t)y=g,(y,t) U@y, t)=g,(yt)
U(x,0,t) =g, (x,t);U(x,1,t) = g,(x,1).
Let k>0 and h>0 be the time step and space step
respectively. We divide the interval 0 <x,y <linto (N +1)
subinterval, so that (N +1)h =1.The grid points are given by

(x,y;.t,) = (ih, jh, mk) wherem=1,2,3,....

Standard Point Iterative Method

Finite difference discretisation of (1) using the common
centred difference formula for the second partial derivatives
will produce
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where

X =iAX, ¥y = jAy,t =mAt; (i, j=0,1,2,..,n-1;m=0,1,..) This
equation is equivalent to
_(r2/2)uifl,j,m+1 +(1+a+2r’ +b/2)u,
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whereh = Ax = Ay =1/nand r = At/h,a = aAt,b = B*At".
Fig 1 shows the computational molecule of the standard point
approximation (3).
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Fig 1 Computational molecule of the standard point
approximation (3)
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Rotated Point Iterative Method

Using the rotated finite difference approximation (which is
obtained by rotating the x-y axis clockwise 45 degrees) for
the second partial derivatives, equation (1) becomes
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Upon simplification, the following is obtained
- (r2/4)uH’Hvm+1 +(L+a+r’+b/2)u,
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Fig 2 represents the computational molecule of the rotated
point approximation (5). A point iterative scheme based on
the by constructing 2 types of points on the x-y plane of the
solution domain. We may then choose to iterate on one type

of points and after convergence is achieved, the solutions at
the remaining points will be evaluated directly using equation

(3).

Explicit Group (EG) Iterative Method

Consider the standard point approximation which was
derived from the central finite difference discretisation
(2)-(3). Applying equation (3) to any group of four points on
a discretised solution domain will result in a (4x4) system of
equation as follows:
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The (4x4) system in (6) can be inverted to become

Ui,j,m+1 mL m2 m3 m2 rhsi,j
i mit m2 mL m2 m3| rhs,; 0
ui+1,j+1,m+1 m3 m2 ml m2 rhSi+1‘j+1
u . m2 m3 m2 ml/{rhs
i, j+1,m+1 i+l
where

ml=2(4a" +4ab+16ar +8a+16r +4+8rb+4b+14r +b)

/(8a° +12a’'b +48a’r’ +24a" + 24ab +88ar’ + 96ar’ + 48ar’b + 24a + 8
+6ab’ +12b +12r'b" +48r  +b" +88r' +44r'b+48r° +48r'b+6b°);
m2=2r"/(4a" +4ab+16ar  +8a+4b+12r  +16r +8r'b+4+b’);
m3=4r'/(8a’ +12a’b +48a’r’ +24a’ + 24ab + 88ar’ + 96ar’
+48ar’b + 24a +6ab” +12r'b" +12b+8+48r° +b’ +88r°

+44r°D + 48r° + 48r'b + 6b°).

Explicit De-Coupled Group (EDG) Iterative Method

Similarly, applying equation (5) to any group of four
points of the solution domain will result in (4x4) system of
equations
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where

Kl=1+a+r’+b/2;k2=—r’/4 and k3=0
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which can be written in an explicit de-coupled system of
(2x2) equations
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{ui jumel ] 1 (ml mzj(rhsi j j
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u|+1‘j,m+1 1 ml m2 rhs|+1,1
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(10)
where

A=16+32a+32r +16b+16a +32ar’ +16ab+15r +16r'b+4b";
ml=8(2+2a+2r +b);m2=4r’.

The EDG scheme corresponds to generation of iterations on
one type of points using equation (9) until a certain
convergence criteria are met. After convergence is achieved,
the solutions at the remaining points are evaluated directly
once using the centred difference formula (3). The
convergence of this scheme may be further accelerated by
applying the SuccessiveOverRelaxation iterative scheme on
the iterative formula.

I1l. COMPUTATIONAL COMPLEXITY ANALYSIS

In this section, we analyze the computational complexity
for the two explicit group methods and also for the standard
and rotated point iterative methods. The estimation on this
computational complexity is based on the arithmetic
operations performed per iteration. Assume that the solution
domain is discretised with grid size n, then the number of

internal mesh points is given by A° where A=n-1.
Iterative points and direct points are two main types of
internal mesh points. Iterative points are the points that are
involved in the iteration process only, while the direct points
are the points that are computed directly once using the
standard difference formula after the iteration process
achieves convergence. Table 1 lists the number of various
mesh points for the point and explicit group methods. Table 2
shows the number of arithmetic operations required per
iteration and the direct solution after convergence for each

method (excluding the convergence test). To further
understand the complexity analysis of the group methods,
please refer to [1] and [6].

IV. EXPERIMENTS AND DISCUSSION OF RESULTS

In order to verify the applicability of the proposed methods
in solving the two dimensional second order hyperbolic
equations, experiments were carried out on a PC with Core 2
Duo 2.8 GHz, 2GB of RAM with Window XP SP3 operating
system using Cygwin C. All the four methods described in
Sections I1-111 were applied to the model problem (1) with
Dirichlet boundary conditions satisfying several exact
solutions as listed in Table 3.

The methods were run using several mesh sizes of 10, 20,

50 and 98. For convenience, the relaxation factor @, is set
equal to 1.0 (Gauss-Seidel relaxation scheme). The
convergence criteria used was the z_ norm with the error

tolerance set equal to e =10 The chosen time step for

examples 1 and 2 was At =0.001 while At=0.1 was
applied to example 3. Table 4 depicts the numerical results
for the group relaxation methods described in Section 1l
where the results are compared with the standard and rotated
point iterative methods. Amongst the point methods, the
rotated scheme is faster than the standard centred difference
scheme as the grid size increases due to its lower
computational complexities. It can be observed that the
accuracies of the explicit group methods are as good as the
standard and rotated point iterative methods but they require
lesser computing timings to achieve the results. For example,
the execution times of EDG is only about 44-68%, 72-81%
and 16-34% of those of the standard centred point method in
Examples 1, 2 and 3 respectively. From Table 2, it is clear
that the theoretical computational costs for the group
methods are lesser than the point methods with EDG
requiring the least computing effort amongst the four
methods.

Table 1 Number of different types of mesh points in the point and explicit group methods

Point types . Number of points
Standard Point Rotated Point EG EDG

Iterative group points 22 /12/2 (A-1)° (A-17°/2

Iterative ungroup points - - 24-1 A
Total iterative points Al /12/2 Al (A +1)/2
Direct ‘standard’ points - /12/2 - (A*-112
Total direct points - /12/2 - (A*-112

Total internal points A’ A° A A°
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Table 2 Computational complexity for the point and explicit group methods

Methods Per Iteration After Convergence
Additional Multiplication Additional Multiplication
Standard Point 1212 5.° - -
Rotated Point 61> 5/12/2 64> 5/12/2
EG 13(A-1)° +12(24-1) 8(1-1)° +5(21-1) - -
EDG 6(1-1)°+124 7(A-1)°12+5A 6(A° 1) 5(1° -1)/2

Table 3 Several examples with Dirichlet boundary conditions (Examples 1&2 [13]; Example 3 [14])

Exam
-ples

Analytical solution

Initial Condition

Boundary Condition

f(xy,1)

u(x, y,t) = x" +y° +t

u(x,y,0) = x" +y’,
u(x,y,0)=x"+y +1

u0,y,t) =y +t,
ud y,t) =1+y" +t,
u(x,0,t) = x" +t,
u(x,1,t) = X" +1+t.

fOy,)=—2+%X +y° +t

2 1u(x, y,t) = e sin(x) sin(y) U Y. 0) =sin(x)sin(y), | u(0,y,t) =u(x,0.t) =0, £(x, y,t) = 2¢ " sin(x)sin(y)
u (x,y,0) = =sin(x) sin(y){ u(,y,t) =e " sin(2)sin(y),
u(x,1,t) = e ' sin(x) sin(l).
3 |u(x,y,t) =logd+x+y+t)u(x,y 0) =logl+x+y), |u(@©,y,t)=logl+y+t), f(x,y,t) = 2/(1+ X+y+1)
U (x,y,0) = . u(,y,t) =log(2+y+1), +logl+ x+y+t)
! 1+ x+y u(x,0,t) = log(1+ x +1), +1/(1+X+y+t)2
u(x,1,t) =log(2 + x +t).
Table 4 Numerical results for the above examples for the proposed methods
(SP-Standard Point Iterative; RP-Rotated Point Iterative;
EG-Explicit Group; EDG-Explicit Decoupled Group Methods)
. Example 1 Example 2
h™ | Methods No. of Elapsed No. of Elapsed
Iterations Max Error | Ave Error Timep(sec) Iterations Max Error | Ave Error Timep(sec)

SP 3 6.948E-5 2.789E-5 0.547 3 2.817E-6 9.162E-7 0.406

10 RP 4 6.958E-5 2.655E-5 0.547 4 4.055E-6 1.285E-6 0.406
EG 3 6.948E-5 2.789E-5 0.547 3 2.817E-6 9.162E-7 0.422

EDG 3 6.958E-5 2.655E-5 0.375 3 4.055E-6 1.285E-6 0.328

SP 3 7.563E-5 3.112E-5 1.063 3 4.401E-6 7.950E-7 1.000

20 RP 4 7.314E-5 3.101E-5 0.938 4 4.044E-6 9.528E-7 0.953
EG 3 7.563E-5 3.112E-5 0.906 3 4.401E-6 7.950E-7 0.922

EDG 3 7.314E-5 3.101E-5 0.656 3 4.044E-6 9.528E-7 0.813

SP 4 7.764E-5 3.341E-5 5.406 3 3.485E-6 8.336E-7 5.235

50 RP 4 7.771E-5 3.335E-5 3.766 4 3.489E-6 8.571E-7 4.530
EG 4 7.764E-5 3.341E-5 4.063 3 3.484E-6 8.334E-7 4578

EDG 3 7.771E-5 3.335E-5 2.703 3 3.490E-6 8.571E-7 4.015

SP 4 7.667E-5 3.384E-5 23.219 4 3.566E-6 8.480E-7 20.516
98 RP 4 7.724E-5 3.408E-5 13.344 4 3.520E-6 8.544E-7 16.500
EG 4 7.725E-5 3.411E-5 15.156 4 3.565E-6 8.475E-7 17.438

EDG 3 7.727E-5 3.410E-5 10.391 3 3.520E-6 8.544E-7 14.906
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Continuation of Table 4: Numerical results for the above examples for the proposed methods
(SP-Standard Point Iterative; RP-Rotated Point Iterative;
EG-Explicit Group; EDG-Explicit Decoupled Group Methods)

V. CONCLUSION

We have demonstrated the applicability of two new
explicit group methods derived from the standard and
rotated five-point difference approximations in the
solution of the two dimensional second order hyperbolic
equation. It is observed that the computational cost for the
explicit group method derived from the rotated finite
difference approximation, EDG, is the least compared to
the other methods tested. The experimental execution
timings obtained for the four methods are found to be in
agreement with their theoretical computational complexity
analysis. The accuracy of the EDG method has been
proven to be comparatively the same as the other methods
even as the domain grid size for the iterative solution
increases. The convergence analysis of these explicit
group methods for the solution of the two dimensional
second order hyperbolic equations is currently under
study. The application of an improved modified version of
the explicit group methods will also be investigated and
will be reported soon.
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