
 
 

 

 
Abstract—In this paper, we present a preliminary study of 

the formulation of two new explicit group relaxation methods 
for the difference solution of the two dimensional second order 
hyperbolic telegraph equations. The methods are derived from 
the standard centred and rotated five-point finite difference 
discretisations.  Their computational complexity analysis is 
discussed. Numerical experimentations are also conducted to 
demonstrate the viability of the explicit group formulations. 
 

Index Terms—computational complexity analysis, finite 
difference method, group explicit method, telegraph equations. 
 

I. INTRODUCTION 

  Explicit group methods for solving the two dimensional 
elliptic and parabolic equations using finite difference 
schemes have been extensively investigated over the years 
[1]-[6].  The advantages of using these methods are easier 
implementation and lesser execution timings requirements 
than the point iterative methods. These methods are also 
favorable in parallelism due to their explicit nature.  

In recent years, numerous methods have been introduced 
in the literature for numerical solution of one- and two- 
dimensional hyperbolic equations [7]-[15]. In particular [10], 
an implicit three-level scheme was developed by Mohanty 
while Evans [7] implemented explicit group methods for the 
nonlinear convection equation.  

In this paper, we introduce new explicit group methods for 
the solution of the two dimensional second order hyperbolic 
equation which is commonly encountered in physics and 
engineering mathematics.  In the next section, we will give an 
overview of the formulation of the explicit group methods 
followed by the computational complexity analysis in 
Section III. The numerical experiments and the results are 
presented in Section IV. Finally, concluding remarks is given 
in Section V. 
 

II. THE GROUP ITERATIVE METHODS 

In this section, we briefly introduce the explicit group 
methods for the two dimensional second order hyperbolic 
equations based on two finite difference approximations,  
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specifically the standard and the rotated point iterative 
approximations. 

Consider the two dimensional second order hyperbolic 
equation (telegraph equation) defined in the region 
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where ( , , ) 0, ( , , ) 0, ( , , ) 0, ( , , ) 0x y t x y t A x y t B x y t     . 
The initial and boundary conditions are given by 
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Let 0k  and 0h  be the time step and space step 
respectively. We divide the interval 0 , 1x y  into ( 1)N   
subinterval, so that ( 1) 1N h  .The grid points are given by 

( , , ) ( , , )
i j m

x y t ih jh mk where 1, 2, 3, ...m  .  

 
Standard Point Iterative Method 

Finite difference discretisation of (1) using the common 
centred difference formula for the second partial derivatives 
will produce 
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where
1 ..., , ; ( , 0,1, 2, ..., ; 0,1, )nx i x y j y t m t i j m         This 

equation is equivalent to 
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(3) 

where 1h x y n     and 2 2
, ,r t h a t b t       . 

Fig 1 shows the computational molecule of the standard point 
approximation (3). 
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Fig 1 Computational molecule of the standard point 

approximation (3) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 2 Computational molecule of the rotated point 
approximation (5) 
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Rotated Point Iterative Method 

Using the rotated finite difference approximation (which is 
obtained by rotating the x-y axis clockwise 45 degrees) for 
the second partial derivatives, equation (1) becomes  
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(4) 
Upon simplification, the following is obtained 
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(5) 

Fig 2 represents the computational molecule of the rotated 
point approximation (5). A point iterative scheme based on 
the by constructing 2 types of points on the x-y plane of the 
solution domain.   We may then choose to iterate on one type 
of points and after convergence is achieved, the solutions at 
the remaining points will be evaluated directly using equation 
(3). 
 
Explicit Group (EG) Iterative Method 

Consider the standard point approximation which was 
derived from the central finite difference discretisation 
(2)-(3). Applying equation (3) to any group of four points on 
a discretised solution domain will result in a (4x4) system of 
equation as follows: 
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where 
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The (4x4) system in (6) can be inverted to become 
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Explicit De-Coupled Group (EDG) Iterative Method 

Similarly, applying equation (5) to any group of four 
points of the solution domain will result in (4x4) system of 
equations  
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where 
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which can be written in an explicit de-coupled system of 
(2x2) equations 
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The EDG scheme corresponds to generation of iterations on 
one type of points using equation (9) until a certain 
convergence criteria are met.  After convergence is achieved, 
the solutions at the remaining points are evaluated directly 
once using the centred difference formula (3).  The 
convergence of this scheme may be further accelerated by 
applying the SuccessiveOverRelaxation iterative scheme on 
the iterative formula. 

III. COMPUTATIONAL COMPLEXITY ANALYSIS 

In this section, we analyze the computational complexity 
for the two explicit group methods and also for the standard 
and rotated point iterative methods. The estimation on this 
computational complexity is based on the arithmetic 
operations performed per iteration. Assume that the solution 
domain is discretised with grid size n, then the number of 

internal mesh points is given by 2  where 1n   . 
Iterative points and direct points are two main types of 
internal mesh points. Iterative points are the points that are 
involved in the iteration process only, while the direct points 
are the points that are computed directly once using the 
standard difference formula after the iteration process 
achieves convergence. Table 1 lists the number of various 
mesh points for the point and explicit group methods. Table 2 
shows the number of arithmetic operations required per 
iteration and the direct solution after convergence for each 

method (excluding the convergence test). To further 
understand the complexity analysis of the group methods, 
please refer to [1] and [6]. 

IV. EXPERIMENTS AND DISCUSSION OF RESULTS  

In order to verify the applicability of the proposed methods  
in solving the two dimensional second order hyperbolic 
equations, experiments were carried out on a PC with Core 2 
Duo 2.8 GHz, 2GB of RAM with Window XP SP3 operating 
system using Cygwin C. All the four methods described in 
Sections II-III were applied to the model problem (1) with 
Dirichlet boundary conditions satisfying several exact 
solutions as listed in Table 3. 

The methods were run using several mesh sizes of 10, 20, 

50 and 98. For convenience, the relaxation factor e is set 

equal to 1.0 (Gauss-Seidel relaxation scheme). The 

convergence criteria used was the   norm with the error 

tolerance set equal to 1010  . The chosen time step for 

examples 1 and 2 was 0.001t  while 0.1t   was 
applied to example 3. Table 4 depicts the numerical results 
for the group relaxation methods described in Section II 
where the results are compared with the standard and rotated 
point iterative methods. Amongst the point methods, the 
rotated scheme is faster than the standard centred difference 
scheme as the grid size increases due to its lower 
computational complexities. It can be observed that the 
accuracies of the explicit group methods are as good as the 
standard and rotated point iterative methods but they require 
lesser computing timings to achieve the results. For example, 
the execution times of EDG is only about 44-68%, 72-81% 
and 16-34% of those of the standard centred point method in 
Examples 1, 2 and 3 respectively.  From Table 2, it is clear 
that the theoretical computational costs for the group 
methods are lesser than the point methods with EDG 
requiring the least computing effort amongst the four 
methods. 

  
 
 
 

Table 1 Number of different types of mesh points in the point and explicit group methods 

Point types 
Number of points 

Standard Point Rotated Point EG EDG 

Iterative group points 2  
2 2  2( 1)   2( 1) / 2   

Iterative ungroup points - - 2 1   

Total iterative points 2  
2 2  2  

2( 1) / 2   

Direct ‘standard’ points - 2 2  - 2( 1) / 2   

Total direct points - 2 2  - 2( 1) / 2   

Total internal points 2  2  2  2  
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Table 2 Computational complexity for the point and explicit group methods 

Methods 
Per Iteration After Convergence 

Additional Multiplication Additional Multiplication 

Standard Point 212  25  - - 

Rotated Point 26  
25 2  26  

25 2  

EG 213( 1) 12(2 1)     28( 1) 5(2 1)     - - 

EDG 26( 1) 12    27( 1) / 2 5    26( 1)   25( 1) / 2   

 
 
 
 

Table 3 Several examples with Dirichlet boundary conditions (Examples 1&2 [13]; Example 3 [14]) 
Exam
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Table 4 Numerical results for the above examples for the proposed methods  
(SP-Standard Point Iterative; RP-Rotated Point Iterative;  

EG-Explicit Group; EDG-Explicit Decoupled Group Methods) 

h-1 Methods 
Example 1 Example 2 

No. of 
Iterations 

Max Error Ave Error 
Elapsed 

Time (sec) 
No. of 

Iterations 
Max Error Ave Error 

Elapsed 
Time (sec) 

10 

SP 3 6.948E-5 2.789E-5 0.547 3 2.817E-6 9.162E-7 0.406 
RP 4 6.958E-5 2.655E-5 0.547 4 4.055E-6 1.285E-6 0.406 
EG 3 6.948E-5 2.789E-5 0.547 3 2.817E-6 9.162E-7 0.422 

EDG 3 6.958E-5 2.655E-5 0.375 3 4.055E-6 1.285E-6 0.328 

20 

SP 3 7.563E-5 3.112E-5 1.063 3 4.401E-6 7.950E-7 1.000 
RP 4 7.314E-5 3.101E-5 0.938 4 4.044E-6 9.528E-7 0.953 
EG 3 7.563E-5 3.112E-5 0.906 3 4.401E-6 7.950E-7 0.922 

EDG 3 7.314E-5 3.101E-5 0.656 3 4.044E-6 9.528E-7 0.813 

50 

SP 4 7.764E-5 3.341E-5 5.406 3 3.485E-6 8.336E-7 5.235 
RP 4 7.771E-5 3.335E-5 3.766 4 3.489E-6 8.571E-7 4.530 
EG 4 7.764E-5 3.341E-5 4.063 3 3.484E-6 8.334E-7 4.578 

EDG 3 7.771E-5 3.335E-5 2.703 3 3.490E-6 8.571E-7 4.015 

98 

SP 4 7.667E-5 3.384E-5 23.219 4 3.566E-6 8.480E-7 20.516 
RP 4 7.724E-5 3.408E-5 13.344 4 3.520E-6 8.544E-7 16.500 
EG 4 7.725E-5 3.411E-5 15.156 4 3.565E-6 8.475E-7 17.438 

EDG 3 7.727E-5 3.410E-5 10.391 3 3.520E-6 8.544E-7 14.906 
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Continuation of Table 4: Numerical results for the above examples for the proposed methods  
(SP-Standard Point Iterative; RP-Rotated Point Iterative;  

EG-Explicit Group; EDG-Explicit Decoupled Group Methods) 

h-1 Methods 
Example 3 

No. of 
Iterations 

Max Error Ave Error 
Elapsed 

Time (sec) 

10 

SP 22 5.122E-4 1.999E-4 0.010 
RP 14 5.367E-4 2.091E-4 0.010 
EG 15 5.122E-4 1.999E-4 0.016 

EDG 11 5.367E-4 2.091E-4 0.010 

20 

SP 64 5.126E-4 2.240E-4 0.047 
RP 37 5.182E-4 2.264E-4 0.016 
EG 36 5.126E-4 2.240E-4 0.031 

EDG 28 5.182E-4 2.264E-4 0.016 

50 

SP 322 5.127E-4 2.387E-4 1.735 
RP 172 5.136E-4 2.391E-4 0.516 
EG 171 5.127E-4 2.387E-4 0.656 

EDG 131 5.136E-4 2.391E-4 0.297 

98 

SP 1108 5.126E-4 2.450E-4 23.922 
RP 585 5.129E-4 2.451E-4 6.563 
EG 584 5.127E-4 2.451E-4 8.781 

EDG 448 5.129E-4 2.451E-4 3.891 
  

 

 
V. CONCLUSION 

We have demonstrated the applicability of two new 
explicit group methods derived from the standard and 
rotated five-point difference approximations in the 
solution of the two dimensional second order hyperbolic 
equation.  It is observed that the computational cost for the 
explicit group method derived from the rotated finite 
difference approximation, EDG, is the least compared to 
the other methods tested. The experimental execution 
timings obtained for the four methods are found to be in 
agreement with their theoretical computational complexity 
analysis. The accuracy of the EDG method has been 
proven to be comparatively the same as the other methods 
even as the domain grid size for the iterative solution 
increases.  The convergence analysis of these explicit 
group methods for the solution of the two dimensional 
second order hyperbolic equations is currently under 
study. The application of an improved modified version of 
the explicit group methods will also be investigated and 
will be reported soon.  
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