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Explicit Group Methods in the Solution of the
2-D Convection-Diffusion Equations

Tan Kah Bee, Norhashidah Hj. M. Ali, and Choi-Hong Lai

Abstract—In this paper, we present the four points Explicit
Group (EG) and Explicit Decoupled Group (EDG) schemes for
solving the two dimensional convection-diffusion equation with
initial and Dirichlet boundary conditions. The EG method is
derived from the centred difference approximation whilst EDG
is derived from the rotated difference operator expressed in
coordinates rotated 45° with respect to the standard mesh.
These new formulations are shown to be unconditionally stable
and the robustness of these new formulations over the existing
point Crank-Nicolson scheme demonstrated through numerical
experiments.

Index Terms—Explicit Group (EG), Explicit Decoupled
Group (EDG), Convection-Diffusion, Crank-Nicolson, Rotated
Crank-Nicolson.

1. INTRODUCTION

Consider the two dimensional convection-diffusion equation:

oU o’U  oU , U , oU
—=a,—+a,—-b—-b— (1)
ot ox oy’ ox oy

with initial and boundary conditions:

u(x,y,0)= 1 (x,y)

u(anst):g](yat)7 u(X’yat):gz(y7t) (2)
u(x703t) = h‘l(xit)7 H(X,Y,t) = hZ(x,t)'

Here a, a, b, b, are positive constants, on a rectangular
grid with grid spacing Ax in x-direction and Ay in
y-direction, with x; = xy + idx, y; = yy + jdy and ¢, = nAt (for
alli=0,1,2,...,nx,/,=0,1,2..,n,n=0,1,2, ...), X=X
+nxAx, Y =y, + nydy . Equation (1) can be approximated at
any point (x; ), f,) in various ways. One commonly used
integration method is the Crank-Nicolson formula:
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Let the Courant numbers (Cx, Cy) and diffusion numbers (Sx,
Sy) be defined as
Sx = a At/ Ax*
Sy =a At/ Ay* “
Cx=b At/ Ax
Cy=0b,At/Ay.
Thus (3) can be simplified as

Sx Cx Sx Cx
1+ Sx+ Sy)u/.,.nu - (i"' 7)”1—1.”;” - (7_ 7)’4”1,/,“1

2 4 2 4
Sy Cy Sy Cy
_[ P + 4 ju:,/—l_nﬂ _[ P _T Ui jiinst
Sx Cx Sx Cx (5)
=(1=8x-Syu,,, (7+ Tju”' jon T (7* T) e

(2 D (2

with the computational molecule as in Fig. 1.

Another integration method derived from the
Crank-Nicolson formula can be obtained by rotating the x-y

axis clockwise by 45°. Using Taylor series expansion, the

rotated Crank-Nicolson formula for (1) can be shown to be
of the following form [2]:

(1 + %+ S%) U i1 — (%+ %_ %J Uiy jetmer — (%_ %_ %j Uiy jetnet

u

Sx Sy Sx Cx Cy Sx Cx Cy
s\l u |t~ Uiy jont| > o Y
2 2 4 8 8 4 8 8
T (. T A PR (Ao, L A PR
4 8 8 4 8 8

(6)

It is clearly seen that the application of either (3) or (6) at
each time step will result in a large and sparse linear system,

Aty =Buy, 7
where 4 and B are square nonsingular matrices, while u,.;
and u, are specific column matrices. The solution of (7) can
be obtained by direct or iterative methods. Since the equation
is large and sparse, iterative method is more suitable to be
used in solving this type of problem, either in point or block
formulations.
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Fig. 1: The Crank-Nicolson scheme with natural ordering

The Explicit Group (EG) and Explicit Decoupled Group
(EDG) schemes can be constructed based on (5) and (6)
respectively. The original EG scheme was formulated by
Yousif and Evans [4] in solving the two dimensional elliptic
equation by constructing new grouping of the mesh points

(1-Sx=Sy)u, ,,, +(%+%]u,,w‘ +(%7%]u,4w +(%+%]uw‘” +(%7%)14‘ e
;ﬁ:“/’ ) (1-Sx=Sy)u,,, ., +(%+%}u,_m +(%—%)u i +(%+%}u,_, . *[%’%j“m.m.u
T]’i’/’}“' ) (1-Sx=Sp)uy 11 +[%+%]u‘ i +(%—%)u““w +[%+%Ju“‘ i *[%’%]"szm .
(1-Sx—=Sy)u, ,,,,,+(%+%}u i +(%7%]u ,/‘,_,,+[%+%)u”” +[%—%juw“

(10)
Equation (8) can be inverted to obtain the four-point EG
equation:

into smaller size groups of points where the gains in
execution timings of the four point EG method over the
1-line smoother ranges from 25%-36%. Using the idea of
smaller size groupings on rotated grids, Abdullah [1]
developed the four points EDG which was shown to be more
efficient computationally than the EG method. Yousif and
Evans [5] later extended the method to six and nine points
groupings and showed that they can be easily parallelised on
an MIMD multiprocessor. Sections II and IIT describe the
formulation the EG and EDG methods respectively, for the
two dimensional convection-diffusion equation. The
truncation error and consistency analysis are presented in
Section 1V, followed by the stability analysis in Section V.
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Numerical experiments and results are presented in Section

VI. The concluding remark is given in Section VII.

II. ExpriciT GROUP (EG)

Gauss-Seidel iterative scheme to the four-point EG formula
(11) at each time level. Iterations are generated in groups of
four points over the entire spatial domain until the
convergence test is satisfied. The converged solutions are
then taken as initial guesses for the iterations at the next time

To formulate the EG scheme, we apply (3) to any group of
four points on the solution domain at each time step. Thus, at
any particular time level (n+1), this will result in a (4x4)
system of the form:

1+ Sx+ Sy ,(&,9} —(S—y—gj
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level.

III.

EXPLICIT DECOUPLED GROUP (EDG)

Similar to the EG method, we apply (6) to any group of
four points in the solution domain at each time step to obtain
the following (4x4) system of equations:

2,y (S O O 0 0
2 4 8 8
7(s7, L) LSS 0 0 e
4 8 8 22 U jorn | _| Th2
0 o LSS 7(g+g79) Uy || B3
2 47878 )| e | L4
0 0 —[%—%Jr%] 1+%+% (12)
with
rhl by jo ¥y e 0+ T
rh2 _ bui./+2,n+1 tCU, i T dui+2,/.l1+l + ];+1,/+|
rh3 Clis jipn T dui+2,j71,n+l teu; ;. t 7:41,]'
rh4 bu!*l,j+2,n+1 F ULy g T €Uy T (13)
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The system (12) leads to a decoupled system of 2x2
equations in explicit form:

125 S ,[&,Q,Qj
2 4 8 8 U | {rhl }
—[&+Q+Q) 1+§ Sl Uit jat st rh2
4 8 8 202 (15)
and
145, S ,(§+Q,Q
22 4 8 8 {um,.m,}{rhﬂ
{&_9+9g 1258 W] L4

Referring to Fig. 2(a), it is observed that the iterative
evaluation of (15) at any time level involves points of type @
only, while the evaluation of (16) involves points of type O
only (see Fig. 2(b)). Thus, the iterations may be chosen to
involve only one type of points. Suppose we choose to iterate
on points of type @. Hence, the EDG scheme corresponds to
generation of iterations on these points using the group
formula (15) until a convergence test is satisfied. After
convergence is achieved, the solutions at the points of type O
are evaluated directly once using the Crank-Nicolson
formula (5) before proceeding to the next time level.

i+2 i+2.42

1,1 . i_+1j+

ill g1 1,1

o i

v Time level n

e
NV aad
Fig. 3 Grid generation at time level n+/ and n (mesh size
N=9)
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IV. TRUNCATION ERROR AND CONSISTENCY

The local truncation for the Crank-Nicolson scheme may
be obtained by using the Taylor series expansion about the
point (X; Y, ty+12):
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i.e. Tey= OAF) + O(AXY) + O(AYY) (17)
Let & = Ax = Ay, k = At, the local truncation error for this
scheme is then

Y
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s e S PPy to
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As Ax, Ay, At — 0, the truncation error Ty tends to zero.
Hence, as the grid spacings Ax, Ay, At —0 in the limit sense,
the Crank Nicolson formula (5) is equivalent to the
convection-diffusion equation and thus is consistent. EG is
also consistent and its truncation error is similar with the
Crank-Nicolson scheme since it is derived from the same
formula.

Assuming that @ = a, = a,, the truncation error for the
rotated Crank-Nicolson scheme becomes:
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X A2 A3 X A2 A 2 Y A2 A3 Y A2 A2
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i.e. Trov= O() + OhY). (19)
Similarly, the rotated Crank-Nicolson equation (6) is
consistent and the consistency of EDG is also maintained
since it is based on the same formula.

V. STABILITY ANALYSIS

Explicit Group (EG)

Equation (8) can be written explicitly in difference form as
Upe; = Tu, where T = 4”'B. Here,
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R R ) 4 . 1
L sl =478, <[] 18l < 1Bl <1
R, R R ’ 4],
A= for all Cx, Cy, Sx, Sy > 0. Therefore the EG iterative method
R, R R, is unconditionally stable.
R3 Rl
G G, G Explicit Decoupled Group (EDG)
G, G G p - T , Equation (12) may also be expressed explicitly as  u,+; =
R = 2 ’ T u, where T = A"'B. The matrix 4 is of the form:
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Since the amplification matrix 7~ =4"'B,

1
ST =lla7'B|| <47 ||IBl| <-——|B| <1
Irl, =[4°2]. s} L 1oL, < pr-lel.

for all Cx, Cy, Sx, Sy > 0. Therefore, the EDG iterative
scheme is unconditionally stable.

VI. NUMERICAL EXPERIMENTS

The experiments were carried out on a PC with Intel (R)
Corel(TM)2 Duo CPU E7400 @ 2.80 GHz, 1.98 GB of RAM
running Windows XP Pro using C compiler in Cygwin.
Throughout the whole experiments, the absolute error test
was used with tolerance equals to 107", One average error
was obtained at each time step. The Average Error depicted
in Tables I-IIT denotes the maximum of all the average errors
for the particular mesh size. Tables I, II and III present the
numerical results of the four methods, the classical
Crank-Nicolson, rotated point Crank-Nicolson, EG and
EDG, in solving Examples I, 2 and 3 respectively, for the
number of time step NT = 100 and At=0.01.

Example 1(Diffusion problem)

We consider the following example (a,=a,=1, b,=b,=0):
U _ 9 90U, 0<x<1,0<y<l,0<¢<T.

ot ox* oy’
The initial and boundary conditions are defined so that they
satisfy the exact solution [3]:

},t > 0.
(20)

1 ~(x-0.5)" (»-0.5)

U(x’y’t)_4t+1eXp{ a1 A+l

EG reduces the execution times up to 50% of the classical
Crank-Nicolson while maintaining the same degree of
accuracies. The execution timings of EDG are nearly 65% of
the rotated Crank-Nicolson scheme. The latter was also
observed to require lesser computing timings than the
original Crank-Nicolson scheme.

Example 2

Consider the following example (ax = ay = b, = b, = I):
U _&U U U U, 0<x<1,0<y<1,0</<T

ot ox* oyt ox oy
The exact solution of the problem above is as follows [3]:

exp{_(x_t_oj)2 —(y_t_OAS)Z},t >0.

UGx,y,1) =——

4r+1 4t+1 4t +1

(21
Similar with Example 1, EG is faster than the Crank-Nicolson
scheme, while EDG is faster than the rotated Crank-Nicolson
and the EG schemes.
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Fig. 4: Experimental Results of Example 1
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Fig. 5: Experimental Results of Example 2

Eexecution Time in seconds
-

Example 3

We will consider a convection dominant problem. Let a, =
a, = 0.1, b, = b, = 1.0, then the exact solution of the problem
above is denoted as below [3]:

1 (x-1-05)"  (y—1-05)°
U, y,1) =——expi 10 1 >0
(x0) 4z+1e"p{ ) @) [

(22)
As shown in Table III and Fig. 6, EDG scheme requires the
least execution timings compared to the other three methods.
In all of the examples, the EG method produces almost the
same accuracies as the classical Crank-Nicolson, while the
EDG method is almost as accurate as the rotated
Crank-Nicolson.

(o 2.7
—+—Crank Nicolson

Q
n

-=EG

Rotated Crank Nicolson

Q
»

—EDG

Q
W

Q
=

Exccution TIme in scconds
o
N

[ 2]

10 20 30 40 50
Mesh Size, N

Fig. 6: Experimental results of Example 3

VII. CONCLUSIONS

In this paper, we have presented effective unconditionally
stable group explicit iterative algorithms in solving the two
dimensional convection-diffusion problem. The methods
serve as viable alternative solvers to the problem with the
group scheme derived from the rotated finite difference
approximation requiring the least computing efforts among
the schemes tested. The parallel implementation of these
group methods are still under investigation and will be
reported soon.
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Table I: Experimental results of Example 1 for each scheme with natural ordering (NT= 100, At = 0.01)

Mesh Size, : : Classical C-N : : : Explicit Group (EG) :
N Total iteration Average Error Exgcut|on Total iteration Average Error Exgcut|on
Number Time (s) Number Time (s)
13 3400 2.63323E-04 0.031 2015 2.63323E-04 0.016
21 7343 5.71861E-05 0.125 4086 5.71848E-05 0.063
37 19826 3.42176E-05 1.109 10622 3.42213E-05 0.453
49 32993 5.19494E-05 3.297 17528 5.19566E-05 1.360
Mesh Size, Rotated C-N Explicit Decoupled Group (EDG)
N Total iteration Average Error Execution Total iteration Average Error Execution
Number Time (s) Number Time (s)
13 2069 6.04169E-04 0.015 1585 6.04169E-04 0.015
21 4163 1.87250E-04 0.031 3173 1.87250E-04 0.031
37 10717 1.55451E-05 0.313 8171 1.55443E-05 0.219
49 17623 2.88300E-05 0.922 13448 2.88311E-05 0.610

Table II: Experimental results of Example 2 for each scheme with natural ordering (NT= 100, At =0.01)

Mesh Classical C-N Explicit Group (EG)
. Total . Total .
Size, - Execution I Execution
iteration Average Error Time (s) iteration Average Error Time (s)
N Number Number
13 3358 3.09292E-04 0.031 2000 3.09292E-04 0.016
21 7294 8.19951E-05 0.141 4062 8.19938E-05 0.063
37 19815 2.50416E-05 1.141 10615 2.50448E-05 0.485
49 33046 4.21901E-05 3.406 17551 4.21967E-05 1.438
Mesh Rotated C-N Explicit Decoupled Group (EDG)
Size, Total ) Total )
. . Execution . R Execution
N iteration Average Error . iteration Average Error .
Time (s) Time (s)
Number Number
13 2056 6.87329E-04 0.016 1583 6.87329E-04 0.000
21 4144 2.24525E-04 0.047 3169 2.24525E-04 0.031
37 10710 3.32556E-05 0.328 8185 3.32550E-05 0.235
49 17647 1.99782E-05 0.969 13497 1.99791E-05 0.641

Table III: Experimental results of Example 3 for each scheme with natural ordering (NT= 100, At =0.01)
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Mesh Classical C-N Explicit Group (EG)
. Total . Total .
Size ) A Execution . ° Execution
’ iteration Average Error Time (s) iteration Average Error Time (s)
N Number Number
13 905 0.010664914 0.016 675 0.010664914 0.000
21 1431 0.004067973 0.031 966 0.004067973 0.031
37 2954 0.001327565 0.188 1789 0.001327564 0.094
49 4551 0.000783234 0.500 2631 0.000783233 0.234
Mesh Rotated C-N Explicit Decoupled Group (EDG)
Size Total ) Total .
’ . R Execution . R Execution
N iteration Average Error . iteration Average Error )
Time (s) Time (s)
Number Number
13 742 0.020605961 0.016 588 0.020605961 0.016
21 1064 0.007780534 0.016 819 0.007780534 0.016
37 1918 0.002522236 0.078 1465 0.002522363 0.063
49 2769 0.001458329 0.172 2122 0.001458329 0.141
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