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Abstract—In this paper, we apply a second or-
der temporally and spatially accurate finite difference
scheme for biharmonic form of the transient incom-
pressible 2D Navier-Stokes (N-S) equations on irreg-
ular geometries to simulate viscous flow past an im-
pulsively started circular cylinder for Reynolds num-
ber (Re) 200. We have studied time evolution of flow
structure and validate our results with established
numerical and experimental observations available in
the literature; excellent comparison is obtained in all
the cases.
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1 Introduction

Flow over a bluff body is a common occurrence. It occurs
with fluid flowing over an obstacle or with the movement
of a natural or artificial body. Common examples are the
flows past an airplane, a submarine, an automobile, or
wind blowing past a high-rise building. Although many
different shapes of bluff bodies exist, the circular cylin-
der is considered to the representative two dimensional
bluff body. As such the flow around a circular cylin-
der has been the subject of intense research in the last
century and numerous theoretical, numerical and experi-
mental investigations have been reported in the literature
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. The time development
of an incompressible viscous flow induced by an impul-
sively started circular cylinder is now a classical problem
in fluid mechanics. It displays almost all the fluid me-
chanical phenomena for incompressible viscous flows in
the simplest of geometric settings.

In experiment, it is difficult to study the transition from
an initially steady flow to the final periodic vortex shed-
ding flow in detail. On the other hand, in numerical
simulation all aspects of the flow for every stage of the
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flow development remain available. Our focus here is to
examine through numerical simulation the development
of periodic vortex shedding as well as initial laminar flow
profile as the oncoming flow velocity is increased from
zero to a terminal value. This corresponds of course to
the situation when a body is accelerated from rest to a
certain speed. Some of the experimental and numerical
works that may be cited which have studied this flow
regime including the phenomenon of vortex shedding are
[8, 10, 12, 13, 14, 15, 16, 17].

Over the years, the CFD community has seen the
extensive use of both the primitive variable and
streamfunction-vorticity (ψ-ω) formulation to compute
incompressible viscous flows governed by the N-S equa-
tions. Both these formulations have their relative advan-
tages and disadvantages over each other: while the prim-
itive variable formulation has been traditionally difficult
because of the presence of pressure term in the governing
equations, a typical difficulty with the ψ-ω formulation is
that the vorticity ω is not prescribed on the boundaries.
Considering these facts, the ψ-v formulation that uses the
biharmonic form of the N-S equations has emerged as an
attractive alternative approach of solving the N-S equa-
tion. This approach [18, 19, 20, 21, 22, 23] eliminates
the need to compute pressure and vorticity as a part of
the computational process and therefore computationally
much faster than the primitive variable and ψ-ω formu-
lations.

However, the use of all these schemes developed for the
biharmonic form of the N-S equations were limited to
uniform grids only, that too, in simple rectangular ge-
ometries. In the present study, we apply a recently pro-
posed compact scheme [24] which is second order accurate
in both space and time for the transient N-S equations
on non-uniform grids capable of tackling geometries be-
yond rectangular. The grid is constructed using a confor-
mal mapping, which results in a general orthogonal grid,
where the degree and nature of the non-uniformity can
be specified to meet the needs of the problem being stud-
ied. Further, using the compact approach we discretize
this biharmonic equation using unknown solution ψ and
its gradients ψx and ψy at interior grid points.

Our main focus in this paper is to analyze the flow past
an impulsively started circular cylinder in the laminar
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Figure 1: Configuration of the flow past a circular cylin-
der problem.

flow regime where the flow eventually becomes periodic.
In this simulation we have studied time evolution of flow
structure for Reynolds number Re = 200. We have com-
pared our results both qualitatively and quantitatively
with established numerical and experimental results and
excellent comparison is obtained in all the cases.

2 The Problem

The problem is that of the laminar flow past a circular
cylinder placed in a channel of infinite length. The flow
is governed by the incompressible Navier-Stokes (N-S)
equations which in primitive variables in non-dimensional
(details are given in [24]) form are given by
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where t is the time, u, v are velocities along the x- and y-
directions respectively, p represents the pressure and Re
is the non-dimensional Reynolds number. The problem
configuration is as shown in Figure 1.

2.1 The Numerical Scheme

To simulate the flow, we have used the recently devel-
oped compact scheme for biharmonic formulation for the
transient N-S equations by Kalita and Sen [24]. Making
use of the fact that the velocities u and v are defined in
terms of the streamfunction ψ as u = ψy and v = −ψx

and considering conformal transformation x = x(ξ, η),
y = y(ξ, η) of the physical plane into a rectangular com-
putational plane, the biharmonic form of transient N-S
equation in terms of ψ is given as
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where C = Jξ/J, D = Jη/J, E = 2C2 + 2D2 − Jηη/J −
Jξξ/J , J being the jacobian of the conformal transforma-
tion.

Equation (4) is discretized by the proposed extension that
uses values of ψ and its gradients ψξ, ψη in the compact
square cell.

The finite difference approximation for (4) is given by
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Figure 2: Streamlines at Re = 200 for flow past a circular
cylinder at: (a) t = 15, (b) t = 20, (c) t = 28, (d) t = 84,
(e) t = 100 (f) t = 110, (g) t = 126, (h) t = 146, (i)
t = 313, (j) t = 413.

Here 0 ≤ λ ≤ 1. For λ = 1
2 we get O(h2, δt2) implicit

Crank-Nicolson type scheme. Here h is the uniform space
length in the x and y-directions, δt is the uniform time
step and (n), (n+1) represent the time levels at the cur-
rent and next time steps. The calculations are performed
by time marching, using a predictor-corrector approach.

3 Results and Discussion

In order to resolve the quantitative and qualitative fluid
flow features, we focus on a chosen Reynolds number
value of 200 and consider far field R∞ ≈ 43. It is heart-
ening to note that on a relatively coarser grid of size
181 × 301, we are able to accurately capture the char-
acteristics of the flow including the von Kármán vortex
street behind the cylinder.

In our computations, we used the uniform flow parame-
ters as initial conditions and present the solution profiles
in Fig. 2 for various values of t. As seen in Fig. 2,
a symmetric flow was observed at the beginning (figure
2(a), 2(b), 2(c), 2(d)), but there is the initiation of the
near-wake instability at a time around t = 100 (figure
2(e)) resulting in loss of symmetry. The wake starts os-
cillating transversely which is clearly visible in figure 2(f)
and become unstable. Eventually, the flow settled into a
periodic nature (figure 2(j)). We present the temporal
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Figure 3: The streamfunction contours depicting the
wake behind the cylinder for five successive instants of
time (a) t = T , (b) t = T + T0

4 , (c) t = T + T0
2 , (d)

t = T + 3T0
4 , (e) t = T + T0
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Figure 4: The post processed vorticity contours for five
successive instants of time (a) t = T , (b) t = T + T0

4 , (c)

t = T + T0
2 , (d) t = T + 3T0

4 , (e) t = T + T0
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Figure 5: Periodic flow for Re = 200: Power spectra of
the time series of the lift coefficient.

evolution of streamlines and post processed vorticity con-
tours over one complete vortex shedding cycle of duration
T in figure 3 and figure 4 respectively. The evolution of
an impressive von Kármán vortex street, which is a reg-
ular feature of this flow for the Reynolds number con-
sidered here, is clearly seen in these figures. From Fig.
4, one can see the formation of eddies just behind the
circular cylinder; these eddies are then washed away into
the wake region. Two eddies are shed just behind the
cylinder within each period. Figures 4(a) and 4(c) are
half a vortex-shedding cycle apart, and hence figure 4(c)
is a mirror image of Figures 4(a) and 4(e). The peri-
odic nature of the sequence is also apparent from figures
3(a)-(e). The staggered nature of the Kármán shedding
is clear from these plots. The crests and troughs of the
sinuous waves in the streamlines reflect the alternatively
positive and negative vorticities of the eddies. The power
density spectra of this analysis is shown in Fig. 5. Fig.
6 displays the phase-plane of drag-lift for the same time
sample. It clearly establishes the periodic nature of the
flow for the Reynolds number considered and also the
fact that the time period for one complete cycle for the
lift coefficient is twice that of the drag coefficient. In
Fig. 7, we show the time histories of the drag and lift
coefficients which besides releaving the eventual periodic
nature of the flow, also re-establishes the facts of Fig. 5
and Fig 6. In table 1, we compare the Strouhal number,
drag and lift coefficients from our computations with es-
tablished experimental and numerical results. In all the
cases, our results are excellent match with them.

Table 1: Comparison of Strouhal numbers, drag and lift
coefficients of the periodic flow for Re = 200.

Reference St CD CL

Williamson (exp.) [12] 0.197
Le et al. [13] 0.187 1.34 ± 0.030 ±0.43

Linnick and Fasel [13] 0.197 1.34 ± 0.044 ±0.69
Frank et al. [14] 0.194 1.31 ± 0.65

Berthelsen and Faltinsen [13] 0.200 1.37± 0.046 ± 0.70
Present Study 0.199 1.37 ± 0.038 ±0.46
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Figure 6: Periodic flow for Re = 200: Phase plane tra-
jectories of Drag-Lift.
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Figure 7: Evolution of drag and lift coefficients for the
motion past a circular cylinder for Re = 200.

4 Conclusion

In this paper, we present the simulation of laminar flow
past a circular cylinder by a recently developed implicit
unconditionally stable biharmonic formulation for the un-
steady two-dimensional Navier- Stokes equations. The
robustness of the scheme is highlighted when it captures
the von Kármán street behind the cylinder, clearly in-
dicating that our scheme can accurately capture incom-
pressible viscous flows on geometries beyond rectangular
containing multiply-connected regions as well. Because of
its high computational efficiency, our scheme has a good
potential for efficient application to many more problems
and our method is an important addition to the high ac-
curacy solution procedures for transient incompressible
viscous flows.
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