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Abstract—A consecutive system, the failure of
which depends on the occurrence of a number of
failure-success patterns, is introduced. It extends
several consecutive systems studied so far in the lit-
erature. The exact system reliability is determined
for systems with independently functioning compo-
nents. The derivations are based on the exact dis-
tribution of properly defined random variables whose
distributions are obtained by employing an appropri-
ate Markov chain imbedding technique. The results
are illustrated by numerical examples.
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1 Introduction

A consecutive-k-out-of-n:F system, denoted as C(k, n :
F ), consists of an ordered sequence of n components for
which the existence of k (or more) consecutive failed
components causes the system’s failure, 1 ≤ k ≤ n.
C(1, n : F ) and C(n, n : F ) are series and parallel sys-
tems with n components, respectively. Since Kontoleon
[12] first introduced and studied these systems in 1980,
a series of articles have been published studying their
reliability properties under various assumptions because
of their wide applicability; e.g. they have been used to
model telecommunication systems, oil pipeline systems,
vacuum accelerators, etc. For extensive reviews of such
systems and the used methods to evaluate their reliabil-
ity under several component dependencies, we refer to [3],
[13] and [19]. For recent contribution on the subject see
e.g. [4], [5], [17] and the references therein.

However, a situation may occur in which the system does
not weaken so as to fail because of the existence of a run of
k consecutive failed components, if this failure run is fol-
lowed by a run of consecutive working components with
sufficiently large length. That is, we consider a system
that fails if there are k1 consecutive failed components,
k1 ≥ k, followed by less than k1 + r, r ≥ 0, consecutive
working ones. We call such a system consecutive-k, r-
out-of-n:FS system and we denote it as C(k, r, n : FS).
Given n and k, 1 ≤ k ≤ n: (a) C(k, r, n : FS) reduces to

C(k, n : F ) for n < 2k, r ≥ 0 or for any r > n− 2k ≥ 0;
and (b) for 0 ≤ r ≤ n − 2k, C(k, r, n : FS) is a new
system more reliable than C(k, n : F ) with the same k
and n. This is so because the set of possible state config-
urations causing C(k, r, n : FS) failure is a subset of the
respective set of a C(k, n : F ).

To understand these systems consider one possible string
SFFFSSSSSS for n = 10, k = 2, r = 2, where the sym-
bols S, F denote functioning, failed component states,
respectively. In this case, since there are 3 (at least two)
consecutive failures a C(2, 10 : F ) fails but, since the 3
consecutive failed components are followed by 6 (at least
3+2) working components a C(2, 2, 10 : FS) system does
not fail. However, SFFFSSFSSS represents a failure
state of both types of systems.

A generalization of a consecutive-k-out-of-n:F system was
formulated by Griffith [9], who considered a system of
n (n ≥ mk) components ordered on a line, for which
m (≥ 2) non-overlapping strings of k consecutive failed
components are needed for system failure. For such a sys-
tem, named m-consecutive-k-out-of-n:F system and de-
noted as Cm(k, n : F ), in [16] and [1] exact formulae for
its reliability, when the components of the system are
iid (independent and identically distributed), have been
given. In [18] the failure probability of Cm(k, n : F ) hav-
ing independent components was obtained while in [8]
the Stein-Chen method was employed to obtain Poisson
approximations for the reliability.

Following the idea of this generalization Agarwal et al.
[1] argued that a situation may arise in which a system
fails if there are at least m non-overlapping runs of at
least k consecutive failures. They called such a system
m-consecutive-at least-k-out-of-n:F and they employed
GERT analysis to obtain the reliability of the system
when its components are iid. This system, was denoted
as C+

m(k, n : F ) and for m = 1 reduces to C(k, n : F ).
It is mentioned that for C+

m(k, n : F ) a run of failures
of length rk, r ≥ 1, is treated as one run of length at
least k whereas it is treated as r runs of length k for a
Cm(k, n : F ).
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Extending the above generalization we consider a sys-
tem of n components ordered on a line that fails if there
are at least m (m ≥ 1) runs of failed components of
lengths ki (ki ≥ k), i = 1, . . . ,m, . . ., such that the
i-th failure run (of length ki) is followed by less than
ki + r working components, r ≥ 0, 1 ≤ k ≤ n. We call
such a system m-consecutive-k,r-out-of-n:FS system and
we denote it as Cm(k, r, n : FS). This system reduces
to an m-consecutive-at least-k-out-of-n:F system for any
r > n− 2k ≥ 0 and obviously for n < 2k, r ≥ 0. Readily,
for a fixed m ≥ 1, Cm(k, r, n : FS) with 0 ≤ r ≤ n−2k, is
more reliable than C+

m(k, n : F ) which in turns is more re-
liable than Cm(k, n : F ) with the same parameters k and
n. These are true, because the set of possible state config-
urations causing Cm(k, r, n : FS) failure is a subset of the
set of possible state configurations causing C+

m(k, n : F )
failure which in turns is a subset of the respective set of a
Cm(k, n : F ). For the following sequence of n = 15 trials
FFSSSSSFFFSSSSS a C+

2 (2, 15 : F ) fails whereas a
C2(2, 2, 15 : FS) functions.

In this paper we employ an appropriate Markov
chain imbedding technique to obtain the reliabilities
of an m-consecutive-at least-k-out-of-n:F (m ≥ 1), a
consecutive-k, r-out-of-n:FS system and the generalized
m-consecutive-k, r-out-of-n:FS (m ≥ 2), when the system
components are independently functioning with not nec-
essarily equal reliabilities, via the determination of the
exact distribution of properly defined random variables
(RVs). The theoretical results are clarified further by nu-
merical examples. Specifically, the study is organized as
follows.

In Section 2.1 we establish the reliability of a general
class of consecutive systems along with a brief discussion
of the Markov chain imbedding method for enumerating
RVs. In Section 2.2 we derived the reliability of the under
study systems which are presented in Theorems 1 and 2.
Finally, in Section 3 we highlight a potential use of such
systems in applied research.

2 Reliability of consecutive systems

The reliability of any consecutive system mentioned in
Section 1 can be formulated using the following general
setup.

2.1 Preliminaries and general results

Let a system consist of an ordered (linear) sequence of n
(n > 0) components. Each component and the system
itself is either good (working or functioning or in state 1)
or not-good (failed or no-functioning or in state 0). Let
the indicator RVs Z1, Z2, . . . , Zn represent the states of
the system components, i.e. Zi = 1 if component i works;
0, if component i fails. We say that the system fails or it
is in state 0 if there are at least m (m > 0) occurrences
of a pattern E . The pattern E may be an un-interrupted

sequence of 0s or a pre-specified composition of 0s and
1s. If Xn(E) is an enumerating (non-negative) RV de-
noting the number of occurrences of E in the sequence
Z1, Z2, . . . , Zn and Γn = {Z1 = Z2 = . . . = Zn = 0},
then the system failure probability is

Qn,m(E) = P (Xn(E) ≥ m), if Γn ∈ (Xn(E) ≥ m) (1)

and

Qn,m(E) = P (Xn(E) ≥ m) + P (
n∏

i=1

(1− Zi) = 1),

if Γn 6∈ (Xn(E) ≥ m); (2)

whereas the system working (functioning) probability, i.e.
the system reliability is

Rn,m(E) = 1−Qn,m(E). (3)

In many cases the exact distribution of Xn(E), there-
fore the system reliability Rn,m(E), may be captured by
employing a Markov chain imbedding technique (MCIT)
that projects the random variable Xn(E) to appropriate
subspaces of the state space of a properly defined Markov
chain. Usually, a typical element of the state space is rep-
resented by a 2-tuple (x, j). The first component x stands
for the number of occurrences of the pattern E whereas
the second component j provides information about the
stage of the formation of the next pattern.

It was the novel paper of Fu and Koutras [6] that es-
tablished the concept of a Markov chain imbeddable RV
(MV) and it popularized MCIT. After that, Koutras and
Alexandrou [15] refined the method by providing a gen-
eral recursive scheme for the probability distribution of a
Markov chain imbeddable RV of binomial type (MVB).
The concept of MVB was extended later by Han and Aki
[10] who introduced a Markov chain imbeddable RV of
returnable type (MVR) and also gave a general recur-
sive scheme for its probability distribution. The papers
[2], [11], [14] as well as the treatise [7] and the references
therein present many aspects and applications of MCIT
and its versions. In the sequel, a brief -but sufficient for
our study, description of MCIT is given. It presents only
a summary of the involved concepts and the necessary
notation in order to make the article self-contained.

Definition 1. A random variable Xn (n a non-
negative integer) with support {0, 1, . . . , `n}, `n =
max{x; P (Xn = x) > 0}, will be called Markov chain
imbeddable variable if
(a) there exists a Markov chain {Yt; t ≥ 0} defined on a
state space Ω
(b) there exists a partition {Cx, x = 0, 1, . . .} on Ω,
Cx = {cx,0, cx,1, . . . , cx,s−1}, s =| Cx | and
(c) for every x = 0, 1, . . . , `n

P (Xn = x) = P (Yn ∈ Cx).
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Definition 2. A Markov chain imbeddable random vari-
able will be called of
(a) Binomial type (MVB) if P (Yt = cy,j | Yt−1 =
cx,i) = 0, for all y 6= x, x + 1, t ≥ 1, or equivalently
P (Yt ∈ Cy | Yt−1 ∈ Cx) = 0, for all y 6= x, x + 1,
(b) Returnable type (MVR) if P (Yt = cy,j | Yt−1 =
cx,i) = 0, for all y 6= x− 1, x, x + 1, t ≥ 1, or equivalently
P (Yt ∈ Cy | Yt−1 ∈ Cx) = 0, for all y 6= x− 1, x, x + 1.

It is noted that for an MVB there are transitions within
the same sub-state set Cx and transitions from set Cx to
Cx+1 while in the case of an MVR there are, in addition,
transitions from set Cx to Cx−1, i.e. the process can also
move backwards.

Next, let the one-step s× s transition matrices

At(x) = (α(t)
ij (x)), Bt(x) = (β(t)

ij (x)), Dt(x) = (d(t)
ij (x))

with
α

(t)
ij (x) = P (Yt = cx,j | Yt−1 = cx,i),

β
(t)
ij (x) = P (Yt = cx+1,j | Yt−1 = cx,i),

d
(t)
ij (x) = P (Yt = cx−1,j | Yt−1 = cx,i)

and f t(x) the probability vector associated with time t
and sub-state set Cx, i.e., for 0 ≤ t ≤ n,

ft(x) = (P (Yt = cx,0), P (Yt = cx,1), . . . , P (Yt = cx,s−1)).

Then, readily

P (Xn = x) = fn(x)1
′
, x = 0, 1, . . . , `n (4)

with 1 = (1, 1, . . . , 1) ∈ Rs. Also, the convention
P (X0 = 0) = 1 implies that if πx is the (row) vector of
initial probabilities of the Markov chain, i.e. πx = f0(x)
then π01

′
= 1 and πx1

′
= 0, x > 0.

The following Lemmas 1 and 2 provide recursive relations
for the probability vectors ft(x).

Lemma 1. ([15]). For an MVB Xn the sequence ft(x),
t = 1, 2, . . . , n satisfies the recurrence relations

ft(0) = ft−1(0)At(0)

ft(x) = ft−1(x)At(x)+ft−1(x−1)Bt(x−1), 1 ≤ x ≤ `n.

Lemma 2. ([10]). For an MVR Xn the sequence ft(x),
t = 1, 2, . . . , n satisfies the recursive relations

ft(x) = 0, x < 0, or x > `t

ft(x) = ft−1(x)At(x) + ft−1(x− 1)Bt(x− 1)
+ft−1(x + 1)Dt(x + 1), 0 ≤ x ≤ `t.

As we can see the method requires, the proper state space
Ω, its partition {Cx, 0 ≤ x ≤ `n} and the transition ma-
trices, A, B and D, to be determined. Then, relation (4)
along with Lemmas 1 or 2, provide the probability distri-
bution of the under study RV Xn. Therefore, within the
framework of MCIT, what remains for the computation
of the reliabilities of the under study consecutive systems,
in particular C+

m(k, n : F ) and Cm(k, r, n : FS), is: First,
the definition of the failure patterns E which correspond
to the respective systems (i.e. the associated RVs) and
second, the determination of the proper state spaces and
transition probability matrices. The first task is given
next whereas the second is presented in Section 2.2.

Proposition 1. The correspondences among consecu-
tive systems, patterns E causing their failures and the
enumerating RVs used to evaluate the systems reliabili-
ties are:

(I) C+
m(k, n : F ): Let E ≡ Ek = FF . . . F︸ ︷︷ ︸

k1≥k

, then Xn(E) ≡

Gn,k denoting the number of failure runs of length at least
k in a sequence of n binary (success-failure) trials ordered
on a line. Its support is SGn,k

= {0, 1, . . . , `n = [n+1
k+1 ]},

where by [x] we denote the greatest integer less than or
equal to x.

(II) Cm(k, r, n : FS): Let E ≡ Ek,r = FF . . . F︸ ︷︷ ︸
k1≥k

SS . . . S︸ ︷︷ ︸
k2<k1+r

,

then Xn(E) ≡ Nn,k,r denoting the number of occur-
rences of the pattern Ek,r in a sequence of n binary
(success-failure) trials ordered on a line. Its support is
SNn,k,r

= {0, 1, . . . , `n}, with `n = [n+2
3 ], if k = 1, r = 0;

[n+1
k+1 ], otherwise.

We note that for n < 2k, r ≥ 0 or for r > n − 2k ≥ 0,
Nn,k,r counts as Gn,k does since the numbers of the pat-
terns Ek and Ek,r coincide, hence Cm(k, r, n : FS) reduces
to C+

m(k, n : F ), for 1 ≤ m ≤ `n. In general, Nn,k,r ≤
Gn,k for r ≥ 0. Specifically, it holds: Nn,k,r ≤ Gn,k for
0 ≤ r ≤ n− 2k and Nn,k,r = Gn,k for r > n− 2k ≥ 0 or
for n < 2k, r ≥ 0. As an example we consider again the
binary sequence: FFSSSSSFFFSSSSS of n = 15 tri-
als. Then, we have: Gn,2 = 2, Nn,2,2 = 0 and Nn,2,r = 2
for r > 11.

2.2 Systems with independent components

In the sequel we determine the exact reliabilities of
C+

m(k, n : F ) and Cm(k, r, n : FS) under the assump-
tions that the components of the system fail indepen-
dently of each other and their reliabilities pi = P (Zi =
1) = 1−P (Zi = 0) = 1− qi are known for i = 1, 2, . . . , n.
The pi’s are not necessarily the same; if this happens we
have the particular case of systems with iid components,
that is pi = p, qi = q = 1− p for i = 1, 2, . . . , n.
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Let p = (p1, p2, . . . , pn). Since the system reliability is a
function of p, we denote by R+

m(k, n;p) and Rm(k, r, n;p)
the reliability functions of C+

m(k, n : F ) and Cm(k, r, n :
FS) which are given in Theorems 1 and 2, respectively.
The proofs of the theorems are provided in the Appendix
A.

2.2.1 Reliability of an m-consecutive-at least-k-
out-of-n:F system, n ≥ 2

In [15] (see also [14]) it was proved that Gn,k is a MVB
with

Cx = {(x, j); j = −1, 0, 1, . . . , k − 1}
and

At(x) = At =




0 1 2 · k − 1 −1

pt qt 0 · 0 0
pt 0 qt · 0 0
· · · · · ·
pt 0 0 · qt 0
pt 0 0 · 0 0
pt 0 0 · 0 qt




,

Bt(x) = Bt =




0 1 2 · k − 1 −1

0 0 0 · 0 0
0 0 0 · 0 0
· · · · · ·
0 0 0 · 0 0
0 0 0 · 0 qt

0 0 0 · 0 0




.

Theorem 1. For positive integers k, m and n the re-
liability R+

m(k, n;p) of a C+
m(k, n : F ) with indepen-

dent components and reliability of the i-th component
pi, i = 1, 2, . . . , n, is given by

R+
m(k, n;p) = 1−

n∏

i=1

(1− pi), if n < mk + m− 1

and

R+
m(k, n;p) =

∑m−2
x=0 fn−1(x)(An + Bn)1

′
+ fn−1(m −

1)An1
′ − ζ(1, m)

∏n
i=1(1− pi), if n ≥ mk + m− 1,

with An and Bn being the matrices given previously,
f ’s are evaluated via the recursive scheme of Lemma 1
and ζ(1, m) = 1 if m > 1; 0, otherwise.

Remark 1. For m = 1, C+
m(k, n : F ) reduces to

C(k, n : F ). Hence, its reliability R(k, n;p) can be com-
puted via the relationship

R(k, n;p) = R+
1 (k, n;p) = fn−1(0)An1

′
, n ≥ k.

2.2.2 Reliability of an m-consecutive-k, r-out-of-
n:FS system, n ≥ 2

The random variable Nn,k,r is an MVR (see, Appendix
A.2) with

Cx =
{ {(x, j); j = 0, 1, 2}, if k = 1, r = 0, n = 2, 3
{(x, j); j = −[n−r

2 ]− r + 1, . . . ,−1, 0, 1, . . . , [n−r
2 ], [n−r

2 ] + 1}, otherwise

and transition matrices A, B, D given as follows.

(a) If k > 1 then

At(x) = At

=




0 1 2 · k − 1 k k + 1 · [ n−r
2 ] [ n−r

2 ] + 1 −1 −2 · −k − r + 1 · −[ n−r
2 ]− r + 2 −[ n−r

2 ]− r + 1

pt qt 0 · 0 0 0 · 0 0 0 0 · 0 · 0 0
pt 0 qt · 0 0 0 · 0 0 0 0 · 0 · 0 0
pt 0 0 · 0 0 0 · 0 0 0 0 · 0 · 0 0
· · · · · · · · · · · · · · · · ·

pt 0 0 · 0 0 0 · 0 0 0 0 · 0 · 0 0
0 0 0 · 0 0 qt · 0 0 0 0 · pt · 0 0
0 0 0 · 0 0 0 · 0 0 0 0 · 0 · 0 0
· · · · · · · · · · · · · · · · ·
0 0 0 · 0 0 0 · 0 qt 0 0 · 0 · 0 pt

pt 0 0 · 0 0 0 · 0 qt 0 0 · 0 · 0 0
0 qt 0 · 0 0 0 · 0 0 0 0 · 0 · 0 0
0 qt 0 · 0 0 0 · 0 0 pt 0 · 0 · 0 0
· · · · · · · · · · · · · · · · ·
0 qt 0 · 0 0 0 · 0 0 0 0 · 0 · 0 0
· · · · · · · · · · · · · · · · ·
0 qt 0 · 0 0 0 · 0 0 0 0 · 0 · 0 0
0 qt 0 · 0 0 0 · 0 0 0 0 · 0 · pt 0




Bt(x) = Bt = (β(t)
ij )(2[ n−r

2 ]+r+1)×(2[ n−r
2 ]+r+1) with β

(t)
k−1,k = qt and β

(t)
ij = 0 for (i, j) 6= (k − 1, k)

and
Dt(x) = Dt = (d(t)

ij )(2[ n−r
2 ]+r+1)×(2[ n−r

2 ]+r+1) with d
(t)
−1,0 = pt and d

(t)
ij = 0 for (i, j) 6= (−1, 0).

Proceedings of the World Congress on Engineering 2010 Vol III 
WCE 2010, June 30 - July 2, 2010, London, U.K.

ISBN: 978-988-18210-8-9 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2010



(b) If k = 1, r > 0, then

At(x) = At

=




0 1 2 · [ n−r
2 ] [ n−r

2 ] + 1 −1 −2 · −r −r − 1 · −[ n−r
2 ]− r + 2 −[ n−r

2 ]− r + 1

pt 0 0 · 0 0 0 0 · 0 0 · 0 0
0 0 qt · 0 0 0 0 · pt 0 · 0 0
0 0 0 · 0 0 0 0 · 0 pt · 0 0
· · · · · · · · · · · · · ·
0 0 0 · 0 qt 0 0 · 0 0 · 0 pt

pt 0 0 · 0 qt 0 0 · 0 0 · 0 0
0 0 0 · 0 0 0 0 · 0 0 · 0 0
0 0 0 · 0 0 pt 0 · 0 0 · 0 0
· · · · · · · · · · · · · ·
0 0 0 · 0 0 0 0 · 0 0 · 0 0
0 0 0 · 0 0 0 0 · pt 0 · 0 0
· · · · · · · · · · · · · ·
0 0 0 · 0 0 0 0 · 0 0 · 0 0
0 0 0 · 0 0 0 0 · 0 0 · pt 0




Bt(x) = Bt = (β(t)
ij )(2[ n−r

2 ]+r+1)×(2[ n−r
2 ]+r+1) with β

(t)
i1 = qt, i = 0,−1,−2, . . . ,−[n−r

2 ] − r + 1, β
(t)
ij = 0 for all the

other entries and

Dt(x) = Dt = (d(t)
ij )(2[ n−r

2 ]+r+1)×(2[ n−r
2 ]+r+1) with d

(t)
−1,0 = pt and d

(t)
ij = 0 for (i, j) 6= (−1, 0).

(c) If k = 1, r = 0, n > 3 then

At(x) = At

=




0 1 2 · [ n
2 ] [ n

2 ] + 1 −1 −2 · −[ n
2 ] + 2 −[ n

2 ] + 1

pt 0 0 · 0 0 0 0 · 0 0
0 0 qt · 0 0 0 0 · 0 0
0 0 0 · 0 0 pt 0 · 0 0
· · · · · · · · · · ·
0 0 0 · 0 qt 0 0 · 0 pt

pt 0 0 · 0 qt 0 0 · 0 0
0 0 0 · 0 0 0 0 · 0 0
0 0 0 · 0 0 pt 0 · 0 0
· · · · · · · · · · ·
0 0 0 · 0 0 0 0 · 0 0
0 0 0 · 0 0 0 0 · pt 0




Bt(x) = Bt = (β(t)
ij )(2[ n

2 ]+1)×(2[ n
2 ]+1) with β

(t)
i1 = qt, i = 0,−1,−2, . . . ,−[n

2 ] + 1, β
(t)
ij = 0, for all the other entries and

Dt(x) = Dt = (d(t)
ij )(2[ n

2 ]+1)×(2[ n
2 ]+1) with d

(t)
−1,0 = pt, d

(t)
10 = pt and d

(t)
ij = 0, for all the other entries.

(d) If k = 1, r = 0, n = 2, 3, then

At(x) = At = (a(t)
ij )3×3 with a

(t)
00 = a

(t)
20 = pt, a

(t)
12 =

a
(t)
22 = qt and a

(t)
ij = 0, for all the other entries,

Bt(x) = Bt = (β(t)
ij )3×3 with β

(t)
01 = qt; β

(t)
ij = 0, for

(i, j) 6= (0, 1) and

Dt(x) = Dt = (d(t)
ij )3×3 with d

(t)
10 = pt, d

(t)
ij = 0,

(i, j) 6= (1, 0).

In cases (a)-(d) the states in matrices B and D are la-
belled as in the respective matrices A.

Theorem 2. The reliability Rm(k, r, n;p) of a
Cm(k, r, n : FS) for 0 ≤ r ≤ n − 2k, with indepen-
dent components and reliability of the i-th component

pi, i = 1, 2, . . . , n, is given by:

(a) R1(k, r, n;p) = fn−1(0)An1
′
+ fn−1(1)Dn1

′
;

(b) R2(k, r, n;p) = fn−1(0)(An + Bn)1
′
+fn−1(1)(An +

Dn)1
′
+ fn−1(2)Dn1

′ −∏n
i=1(1− pi);

and for m ≥ 3,

(c) Rm(k, r, n;p) =
∑m−2

x=1 fn−1(x)(An + Bn + Dn)1
′

+fn−1(0)(An + Bn)1
′

+ fn−1(m − 1)(An + Dn)1
′

+
fn−1(m)Dn1

′ −∏n
i=1(1− pi),

where An, Bn, Dn are the matrices given above and f ’s
are evaluated via the recursive scheme of Lemma 2.

Remark 2. Since Cm(k, r, n : FS) reduces to C+
m(k, n :

F ) for r > n−2k ≥ 0, Rm(k, r, n;p) becomes R+
m(k, n;p)

which is provided by Theorem 1.

Proceedings of the World Congress on Engineering 2010 Vol III 
WCE 2010, June 30 - July 2, 2010, London, U.K.

ISBN: 978-988-18210-8-9 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2010



3 A note for application

In applied reliability studies we need to work with spe-
cific systems. To this end, we consider possible examples
of C+

m(k, n : F ) and Cm(k, r, n : FS).

Example Let an alarm system of an accelerator consist
of n (≥ 2) detectors (feelers) posed along the surface of
an accelerator. The feelers (i.e. the system components)
might measure the temperature or the radioactivity level
of the accelerator. Their failures are likely to occur inde-
pendently. The reliabilities of the detectors may be differ-
ent because of the holding conditions and the operational
procedures among the individual feelers or they may be
identical due to economic reasons and maintenance pol-
icy. We consider that such a system fails if there are at
least m (≥ 1) clusters of feelers that either: (I) each has
at least k consecutive feelers failed or (II) the i-th cluster
consists of ki (≥ k) failed feelers and is followed by less
than ki+r working ones, r ≥ 0 (i.e. a situation which im-
plies a malfunction of the system which is not possible to
be compensated). Readily, cases (I) and (II) correspond
to C+

m(k, n : F ) and Cm(k, r, n : FS), respectively.

Next, in order to evaluate the reliability of the alarm sys-
tems discussed we consider some specific configurations
of them. The system reliabilities are computed via The-
orems 1 or 2 and they present results helpful to a practi-
cally minded reader.

Table 1 Exact reliabilities of C+
m(k, 15 : F ) and

Cm(k, r, 15 : FS) with independent components,
for (A) pi = 0.85 if i is odd; 0.95, if i is even (B)

pi = p = 0.90, i = 1, 2, . . . , n

k r m System type Reliability

(A) (B)
1 1 series 0.190290 0.205891
1 2 1 consecutive:FS 0.580285 0.618671
1 0 1 consecutive:FS 0.836277 0.880764
3 1 consecutive:F 0.990575 0.988237
3 2 at least consecutive:F 0.999975 0.999963
3 2 1 consecutive:FS 0.994128 0.992845
3 2 2 consecutive:FS 0.999984 0.999976
3 0 1 consecutive:FS 0.996079 0.995358
3 0 2 consecutive:FS 0.999993 0.999990
15 1 parallel 1.000000 1.000000

Let a system consist of n = 15 independently func-
tioning feelers. Table 1 depicts the exact system reli-
abilities R+

m(k, n;p) and Rm(k, r, n;p) for various val-
ues of k, r, m and for p = (p1, p2, . . . , pn) such that
pi = 0.85, if i is odd; 0.95, if i is even (Part A, non-
iid case) and pi = p = 0.90 (Part B, iid case). The
entries of Table 1 show how the reliabilities of the sev-
eral presented systems vary depending on their type as

well as on their internal structure. Further, they con-
firm that Rm(k, r1, n;p) ≥ Rm(k, r2, n;p) ≥ R+

m(k, n;p),
0 ≤ r1 ≤ r2 ≤ n− 2k.

4 Summary and discussion

In this article, we studied the reliability of two general-
izations of the classical consecutive system. The system
components were assumed to function independently of
each other. The results were derived via Markov chain
imbedding.

A potential application concerning an alarm system was
discussed to justify the usefulness of such systems. It was
illustrated further by indicative numerical results.

Closing this section we mention that the approach used
for the study of the new RV Nn,k,r can be modified to
capture also its behavior under a Markovian setup on a
sequence of failure-success trials. This study might be
connected with forecasting in financial markets.

Appendix A

A.1 Proof of Theorem 1

Let Z1, Z2, . . . , Zn be a sequence of n independent bi-
nary (0 − 1) random variables with P (Zi = 1) = pi, i =
1, 2, . . . , n and Γn as in Section 2.1. For n < mk +m− 1,

R+
m(k, n;p) = 1− P (Γn) = 1−

n∏

i=1

(1− pi),

because of the independence of the components. For
n ≥ mk + m− 1,

R1(n, k;p) = P (Gn,k < 1)

and for m ≥ 2,

R+
m(k, n;p) = P ((Gn,k < m) ∩ Γc

n)

=
m−1∑
x=0

fn(x)1
′ −

n∏

i=0

(1− pi).

Next, noting that Gn,k is an MVB we get the result using
the recursive scheme of Lemma 1.

A.2 Proof of Theorem 2

Let Cx be as in Section 2.2.2 and Ω = ∪x≥0Cx. To intro-
duce a proper Markov chain {Yt; t ≥ 0} on Ω for the RV
Nn,k,r, for k > 1, we define Yt = (x, j) as follows:

Yt = (x, j), if at the first t outcomes a pattern Ek,r has
occurred x times and

• j = 0, if the t-th outcome is a success and (a) no
failures are preceded (the success at the t-th out-
come) or (2) the last occurred consecutive failures
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are less than k, or (3) the last occurred consecutive
failures are more than or equal to [n−r

2 ] + 1 or (4)
it is the last outcome of a success run with length
greater than or equal to the length of the immedi-
ately preceded failure run (of length greater than
k − 1) plus r.

• j = i, i = 1, 2, . . . , [n−r
2 ], if the last i outcomes, the

t− i + 1, ..., t− 1, t are i consecutive failures which
are preceded by a success

• j = [n−r
2 ] + 1, if the t-th outcome is the last failure

of a failure run with length greater than or equal to
[n−r

2 ] + 1.

• j = −i, i = 1, 2, . . . , [n−r
2 ] + r − 1, if the t-th out-

come is the last success of a success run which is
preceded by a failure run with length greater than
k − 1 (and less than or equal to [n−r

2 ]) and i more
successes are required to “cover” the preceding fail-
ure run (i.e. the length of the success run to be
equal in number plus r to the length of the preced-
ing failure run).

We note that the number of patterns Ek,r increases by 1
when the number of consecutive failures becomes equal
to k and reduces by 1 when a run of consecutive successes
“covers” the preceding failure run. Therefore, the tran-
sition matrices At(x), Bt(x) and Dt(x) become as they
are presented in case (a) before Theorem 2. For k = 1,
the transition matrices A, B and D are obtained using
similar concepts. Next, let Γn be as in A.1, then it is
evident that

R1(k, r, n;p) = P (Nn,k,r < 1) = fn(0)1
′

and for m ≥ 2,

Rm(k, r, n;p) = P ((Nn,k,r < m) ∩ Γc
n)

=
m−1∑
x=0

fn(x)1
′ −

n∏

i=0

(1− pi).

The results follow using the recursive relations of Lemma
2.
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