

Abstract— A cluster computing is popularly used in parallel
computing for images retrieval approaches. However, it only

attacks this problem at the macro level. In contrast, this paper

presents the micro level aspect of the problem by using

multi-threading. The framework of multi-threaded processing for

an on-line CBIR application is proposed. It enhances the

capability of the application including a process of extracting

low-level features, feature comparison and image downloading

from diverse sources. Although, this paper’s main focus on parallel

computing techniques for image retrieval. However, we also

proposed an efficient color descriptor technique for image feature

extraction, namely, Auto Color Correlogram and Correlation

(ACCC) to improve efficiency of the image retrieval system and

reduce the processing time. Based on the results of the experiment,

the use of multiple threads and ACCC algorithm can significantly

improve the performance of image indexing and retrieval

computation

Index Terms— Mobile Search and Retrieval, Mobile Image

Search, Content-Based Image Retrieval, Tourist Information,

ACCC Algorithm.

I. INTRODUCTION

 The image indexation and similarity measure computation

of images are complex processes and they are an obstacle for

the development of a practical CBIR system. Especially,

when it is developed based on a real-time process optimization

approach. There are many researchers are trying to solve this

problem by using distributed computing, for instance cluster

computing to reduce the computational time [1] [2] [3] [4] [5]

[6]. For instance Yongquan Lu, et al [1] presented a parallel

technique to perform feature extraction and a similarity

comparison of visual features, developed on cluster

architecture. The experiments conducted show that a parallel

computing technique can be applied that will significantly

improve the performance of a retrieval system. Kao, et al [2]

proposed a cluster platform, which supports the

implementation of retrieval approaches used in CBIR systems.

Their paper introduces the basic principles of image retrieval

W. Premchaiswadi, Graduate School of Information Technology in

Business, Siam University, Bangkok 10163, Thailand (email:

wichian@siam.edu)
A. Tungkasthan, Graduate School of Information Technology in Business,

Siam University, Bangkok 10163, Thailand (email: aimdala@hotmail.com).

with dynamic feature extraction using cluster platform

architecture. The main focus is workload balancing across the

cluster with a scheduling heuristic and execution performance

measurements of the implemented prototype. Ling and Ouyang

[3] proposed a parallel algorithm for semantic concept

mapping, which adopts two-stage concept searching method. It

increases the speed of computing the low-level feature

extraction, latent semantic concept model searching and

bridging relationship between image low-level feature and

global sharable ontology. Kao [4] presents techniques for

parallel multimedia retrieval by considering an image database

as an example. The main idea is a distribution of the image

data over a large number of nodes enables a parallel

processing of the compute intensive operations for dynamic

image retrieval. However, it is still a partitioning of the data

and the applied strategies for workload balancing. Although,

cluster computing is popularly used in images retrieval

approaches, it only attacks this problem at the macro level.

Especially, to design a distributed algorithm and program it

with cross-platform capability is difficult [7]. In contrast, this

paper is concerned with the micro level aspect of the problem

by using multi-threading. Multi-threading is not the same as

distributed processing. Distributed processing which is

sometimes called parallel processing and multi-threading are

both techniques used to achieve parallelism (and can be used

in combination) [8].

 Fortunately, with the increasing computational power of

modern computers, some of the most time-consuming tasks in

image indexing and retrieval are easily parallelized, so that the

multi-core architecture in modern CPUs and multi-threaded

processing may be exploited to speed up image processing

tasks. Moreover, it is possible to incorporate an image analysis

algorithm into the text-based image search engines such as

Google, Yahoo, and Bing without degrading their response

time significantly [7]. We also presents modify advanced

algorithm, namely auto color correlogram and correlation

(ACCC) [9] based on a color correlogram (CC) [10], for

extracting and indexing low-level features of images. The

framework of multi-threaded processing for an on-line CBIR

application is proposed. It enhances the capability of an

application when downloading images and comparing the

similarity of retrieved images from diverse sources.

 Section II presents the framework of an on-line image

retrieval system with multithreading. Section III discusses the

proposed indexing technique in older to speed up image

Micro Level Attacks In Real-Time Image

Processing For An On-Line CBIR Systems

Wichian Premchaiswadi, Anucha Tungkatsathan, Member, IAE�G

Proceedings of the World Congress on Engineering 2010 Vol I
WCE 2010, June 30 - July 2, 2010, London, U.K.

ISBN: 978-988-17012-9-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2010

processing tasks. The experimental study is presented in

Section IV and concluding remarks are set out in Section V.

II. THE PROPOSED FRAMEWORK OF MULTITHREADING FOR AN

ON-LINE CBIR SYSTEM

 Before introducing our framework of multi-threading for an

on-line CBIR application, we will briefly examine the

properties of the queries to be answered. We have developed a

novel framework of real-time processing for an on-line CBIR

application, using relevance images from Yahoo images. Our

method uses the following major steps: (a) Yahoo Images is

first used to obtain a large number of images that are returned

for a given text-based query; (b) The users select a relevance

image and a user’s feedback is automatically collected to

update the input query for image similarity characterization;

(c) A multi-threaded processing method is used to manage and

perform data parallelism or loop-level parallelism such as

downloading images, extraction of visual features and

computation of visual similarity measures; (d) If necessary,

users can also change a keyword before selecting a relevance

image for the query; (e) The updated queries are further used

to adaptively create a new answer for the next set of returned

images according to the users’ personal preferences. The

overview of on-line CBIR application is shown in Fig. 1.

Figure 1. Basic principles of the proposed system

 In this section, a multi-threaded processing method is used

to carry out parallel processing of multiple threads for a

specific purpose. Multi-threading is a way to let programs do

more than one thing at a time, implemented within a single

program, and running on a single system. In order to utilize the

threads more efficiently, the number of threads should be

considered and they must technically be assigned to the correct

parts of the program. The development of functions, classes,

and objects in the program should logically be designed as a

sequence of steps. In this research, first, we use the threads

to improve the downloading speed for images from various

sources according to the locations specified in the xml file that

are returned from Yahoo BOSS API [11]. Second, they

increase the speed of computing the image feature extraction

and similarity measure of feature vectors. The framework of

multi-thread processing is presented in Fig. 2. The thread

control and the tasks insight of a thread for retrieving images

are presented in Fig. 3. and Fig. 4.

An image list control receives the xml files that are returned

from Yahoo BOSS API. The Lists of URL can be obtained

from the xml files. They are further displayed and used for

downloading images from the hosts. An image download

module is designed to work in a multithreaded process for

downloading images from diverse sources. It is controlled by

an image search control module. The image search control

module performs a very important function in the management

of the system. It fully supports and controls all modules of the

online CBIR system. It checks for errors, and the input/output

status of each module. Most importantly, it efficiently supports

the synchronization of multiple threads that perform image

download and similarity measurement by the associated

modules. The similarity measurement module performs the

computation of the feature vectors and distance metrics of all

images that are obtained from the image download module.

The image download and similarity measurement modules

work concurrently. The query results are recorded into a

session of an array in sequential order. The image list object is

responsible for the arrangement of all displayed images on the

application.

Figure 2. The framework of in Real-Time multi-threaded processing for an

on-line CBIR application

Figure 3. The thread control and the tasks insight of a thread for downloading

Proceedings of the World Congress on Engineering 2010 Vol I
WCE 2010, June 30 - July 2, 2010, London, U.K.

ISBN: 978-988-17012-9-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2010

images

Figure 4. The thread control and the tasks insight of a thread for retrieving

images.

III. FEATURE COMPUTATION

 This paper’s main focus is on parallel computing

techniques for image retrieval. The main objective is to reduce

the processing time of real-time a CBIR system. However, an

efficient color descriptor technique for image feature extraction

is still required to reduce the processing time. In this section, we

present an efficient algorithm that used in this framework. It is a

modifying of the correlogram technique for color indexing. An

auto color correlation (ACC) [9] expresses how to compute the

mean color of all pixels of color Cj at a distance k-th from a pixel

of color Ci in the image. Formally, the ACC of image {I(x,y), x =

1,2,…,M, y = 1,2,…,N } is defined as

 (1)

Where the original image I(x,y) is quantized to J colors

C1,C2,…,CJ and the distance between two pixels d ∈
[min{M,N}] is fixed a priori. Let MCj is the color mean of

color Cj from color Ci at distance d in an image I. The mean

colors are computed as follows:

 (2)

where Cj ≠ 0 and N is the number of accounting color Cj from

color Ci at distance k , defined by:

 (3)

We propose an extended technique of ACC based on the

autocorrelogram, namely Auto Color Correlogram and

Correlation (ACCC). It is the integration of Autocorrelogram

[6] and Auto Color Correlation techniques [9]. However, The

size of ACCC is still O(md). The Auto Color Correlogram and

Correlation is defined as

 (4)

Let the ACCC pairs for the m color bin be (αi,βi) in I and

(α’i,β’i) in I’. The similarity of the images is measured as the

distances between the AC’s and ACC’s d(I,I') and is applied

from [12] as follows:

 (5)

Where λ1 and λ2 are the similarity weighting constants of

autocorrelogram and auto color correlation, respectively. In the

experiments conducted, λ1 = 0.5 and λ2 = 0.5. α1 and α1 are

defined as follows:

 (6)

The detail of ACC and ACCC algorithms are presented in [9].

IV. EXPERIMENT AND EVALUATION

The experiment focused on studying how multithreads that

run on single-core and multi-core CPUs affect the processing

time in parallel computing for an on-line image retrieval task

and determining the number of suitable threads in single, and

multi core processors. However, the experiments that were

performed are divided into two groups: In group 1, we studied

the performance of multi-thread processing on single-core and

multi-core in term of data parallelism for real-time image

retrieval tasks. In group 2, we evaluated the retrieval rate for

on-line Yahoo image data sets in term of user relevance.

A. Experiment 1: Performance of Multithreading in the

Image Retrieval tasks

In the experimental settings, we used one keyword for
downloading two hundred images and performed the image
search in the same environment (internet speed, time for testing,
hardware and software platform). We tested by using forty-nine
test keywords in heterogeneous categories including animal,
fruit, sunset, nature, and landscape. We performed the image
search three times for each keyword and calculated the average

Proceedings of the World Congress on Engineering 2010 Vol I
WCE 2010, June 30 - July 2, 2010, London, U.K.

ISBN: 978-988-17012-9-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2010

processing time of the whole process for an on-line image
retrieval task. The number of downloaded images for each
keyword must have a maximum error value less than ten percent
of total images. The threads are tested and run on two different
hardware platform specifications such as single-core and
mul t i -core CPUs. They a re descr ibed as fo l lows:

TEABLE I THE AVERAGE TIME IN SECOND OF A WHOLE PROCESS, IMAGE
DOWNLOADING, FEATURE EXTRACTION, AND IMAGE COMPARISON AT SUITABLE
NUMBER OF THREADS IN EACH PLATFORM (MEAN ± STD-DEV)

w S-Core

25 threads

Q-Core

50 threads

w S-Core

25 threads

Q-Core

50 threads

1 159.6±3.3 57.0 ±5.7 26 153.6±9.2 61.0 ±5.1

2 165.6±13.5 57.3 ±6.9 27 156.6±4.9 64.3 ±5.8

3 165.7±15.1 65.7 ±3.9 28 157.6±13.1 68.3 ±3.9

4 148.7±18.9 70.0 ±6.2 29 159.0±11.4 66.0 ±7.8

5 155.6±4.9 75.3 ±7.1 30 161.3±11.8 56.7 ±1.7

6 150.0±13.1 53.3 ±1.7 31 160.3±7.6 51.3 ±4.5

7 159.3±8.5 60.7 ±1.2 32 165.6±16.9 63.3 ±4.2

8 158.0±21.4 65.7 ±2.5 33 153.0±7.5 69.3 ±3.9

9 148.3±17.6 61.3 ±5.4 34 153.3±12.6 59.0 ±4.5

10 160.0±21.9 67.0 ±3.6 35 150.0±10.7 63.6 ±6.0

11 158.3±5.7 71.0 ±2.2 36 158.0±11.3 63.7 ±2.1

12 162.7±10.9 66.3 ±4.0 37 159.6±11.4 60.7 ±6.8

13 155.3±3.4 63.7 ±1.2 38 154.0±5.9 61.0 ±2.9

14 157.7±3.1 62.0 ±1.2 39 157.0±13.4 65.7 ±2.5

15 149.3±4.5 58.7 ±7.5 40 156.6±8.9 62.3 ±4.2

16 152.0±2.3 61.3 ±2.5 41 165.0±11.1 53.7 ±4.8

17 167.7±18.6 66.0 ±7.8 42 164.3±9.7 56.7 ±2.6

18 174.7±15.1 66.0 ±4.9 43 149.3±11.1 56.3 ±3.1

19 171.3±7.6 58.0 ±4.1 44 138.3±6.2 64.3 ±7.8

20 162.0±10.0 71.0 ±9.2 45 148.6±4.0 58.0 ±0.8

21 163.7±3.7 59.3 ±4.5 46 150.0±9.9 57.7 ±6.8

22 162.3±8.3 58.0 ±7.1 47 146.0±7.5 57.0 ±4.3

23 162.0±4.2 56.0 ±5.1 48 145.0±8.5 60.7 ±5.7

24 156.3±16.0 72.3 ±10.2 49 150.0±10.4 54.0 ±3.3

25 154.7±8.9 64.3 ±11.6 Avg. 157.1 ±8.4 62.0 ±7.3

1) Pentium IV single-core 1.8 GHz, and 1 GB RAM DDR2

system. 2) Quad-Core Intel Xeon processor E5310 1.60 GHz,

1066 MHz FSB 1 GB (2 x 512 MB) PC2-5300 DDR2,

respectively. The number of threads versus time on single-core

and multi-core for an image retrieval process that includes

image downloading, feature extraction and image comparison

are shown in Fig. 5, Fig. 6, Fig. 7, and Fig. 8. We can

conclude that the processing time for the same number of

threads in each platform for an image retrieval task is different.

However, we selected the most suitable number of threads

from the tests on each platform to determine the assumptions

underlying a hypothesis test. The results are shown in Table 1.

We formulated the hypothesis based on the experiment by

computing and using the statistical t-test. In order to measure

the significance of the complete processing time obtained by

our scheme, we did a t-test on the forty-nine keywords for

retrieving images, as shown in Table 1. The mean processing

times of single-core and multi-core platforms are 157.12 ±8.4

and 62.0 ±7.3 respectively. Using the t-test to compare the

means of two independent CPU platform specifications, the P

values obtained from the t-test of single-core versus multi-core

is 1.98e-25. A statistical test shows that a multi-core platform

significantly consumes less processing time than that of the

single-core platform.

265.4
145.6

73.8 74.3 97.6 136.3 138.4 154

613

212.4

157.1 210.4

327.8

n/a n/a n/a

1 5 10 25 50 75 100 200
Number of Threads

Download Calculate

n/a = number of downloading images that has an error more

than 10% of total images

Figure 5. Number of threads versus time on single-core for image downloading

and feature extraction

174.2
82.8 71.1 40.2 33.4 32.6 30.5 29.4

568.5

201.7
145.9

71 62 62.1 62.6 62.4

1 5 10 25 50 75 100 200

Number of Treads

Download Calculate

Figure 6. Number of threads versus time on multi-core for image downloading

and feature extraction.

0

100

200

300

400

500

600

700

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Ti
m

e
 (S

e
c.

)

Number of Queries

Serialized 5 threads 10 threads

25 threads 50 threads

Figure 7. Number of trreads versus time on multi-core in all processes for

online CBIR system.

Proceedings of the World Congress on Engineering 2010 Vol I
WCE 2010, June 30 - July 2, 2010, London, U.K.

ISBN: 978-988-17012-9-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2010

1

101

201

301

401

501

601

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Ti
m

e
(S

e
c.

)

Number of Queries

Serialized 5 threads 10 threads

25 threads 50 threads

 Figure. 8 Number of threads versus time on multi-core in all processes for

online CBIR system.

B. Experiment 2: Performance of Similarity Search

 The goal of this experiment is to show that relevant images

can be found after a small number of iterations, the first round is

used in this experiment. From the viewpoint of user interface

design, precision and recall measures are less appropriate for

assessing an interactive system [13]. To evaluate the

performance of the system in terms of user feedback,

user-orientation measures are used. There have been other

design factors proposed such as relative recall, recall effort, and

coverage ratio [14]. In this experiment the coverage ratio

measure is used. Let R be the set of relevant images of query q

and A be the answer set retrieved. Let |U| be the number of

relevant images which are known to the user, where . The

coverage ratio is the intersection of the set A and U, be the

number of images in this set. It is defined by equation 10.

 (7)

Let is the number of keyword used. The average of

coverage ratio is by equation 11.

 (8)

To conduct this experiment, Yahoo Images is first executed to

obtain a large number of images returned by a given text-based

query. The user selects a relevant image, specific to only one

interaction with tzhe user. Those images that are most similar

to the new query image are returned. The retrieval

performance in term of coverage ratio of the proposed system

is compared to the traditional Yahoo text-based search results.

The average coverage ratio is generated based on the ACCC

algorithm using over 49 test keywords in five categories

including animal, fruit, sunset/sunrise, nature, and landscape.

The results are presented in table II and Fig. 9.

TABLE 2. COVERAGE RATIO AVERAGE OF THE TOP 24 OF 200 RETRIEVED IMAGES

Sample

images

Coverage Ratio

Animal Fruit

Sunset/

Sunrise �ature

Lands

-cape

Sample 1 0.71 0.79 0.62 0.64 0.69

Sample 2 0.65 0.71 0.65 0.59 0.65

Avg. 0.68 0.75 0.63 0.62 0.67

The data in table II shows that a proposed scheme using a

keyword with the ACCC algorithm can increase the efficiency

of image retrieval from the Yahoo image database. Using the

combination of text and a user’s feedback for an image search,

the images that do not correspond with the category are filtered

out. It also decreases the opportunity of the images in other

categories to be retrieved. In the experiment, we used two

sample images obtained from the keyword search to test

querying images for evaluating the performance of the system.

Figure 9. The proposed on-line CBIR system, where the keyword “apple” is

used and image results

Proceedings of the World Congress on Engineering 2010 Vol I
WCE 2010, June 30 - July 2, 2010, London, U.K.

ISBN: 978-988-17012-9-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2010

V. CONCLUSIONS

This paper presents a method to bridge the gap between the

theory and practice of CBIR by introducing multi-thread

processing. In order to reduce the processing time of feature

computation, the modified ACCC algorithm was proposed. The

experimental results show that multi-threaded processing can

improve the speed of the processing time for feature extraction

and the measurement of image similarity as well as downloading

images from various hosts. The use of multiple threads can

significantly improve the performance of image indexing and

retrieval on both platforms. However, the number of threads is

limited on a single-core platform but has a significant impact on

a multi-core platform in this experimental setting. The most

suitable number of threads is 10 and 25 to 50 for overall

processes (including image downloading, feature extraction and

image comparison) of an on-line CBIR System based on

single-core and multi-core platform respectively. Additionally,

the performance measure of retrieving image accuracy was

considered. In the future work, the distributed processing and

multi-threading will be used in combination to achieve

parallelism.

REFERENCES

[1] Y. Lu et al. Study of content-based image retrieval using parallel

computing technique. Proceedings of the ATIP’s. :186–191, 2007

[2] O. Kao et al. Scheduling aspects for image retrieval in cluster-based

image databases. Proceedings of First IEEE/ACM. Cluster Computing

and the Grid : 329 - 336, 2001

[3] Y. Ling, Y. Ouyang, "Image Semantic Information Retrieval Based on

Parallel Computing," CCCM, vol. 1, pp.255-259, 2008.

[4] O. Kao, "Parallel and Distributed Methods for Image Retrieval with

Dynamic Feature Extraction on Cluster Architectures," dexa, pp.0110,

2001.

[5] G. Pengdong et al., “Performance Comparison between Color and Spatial

Segmentation for Image Retrieval and Its Parallel System

Implementation,” Proceeding of ISCSCT: 539-543, 2008.

[6] Chris Town and Dr Karl Harrison, “Large-scale Grid Computing for

Content-based Image Retrieval,” Proceeding of ISKO: 2009

[7] Yuli G, Jianping F, Shinichi S. A novel Approach for Filtering Junk

Images from Google Search Results. Springer LNCS 4903 : 1 – 12, 2008.

[8] Multi-Threading in IDL. http:// www.ittvis.com/

[9] T. Anucha el al. Spatial Color Indexing using ACC Algorithms.

Proceeding of the ICT&KE: 113-117, 2009.

[10] Huang Jing. et al. Spatial Color Indexing and Applications. Proceeding

of Sixth International Conference on Computer Vision. : 606 – 607,

1998.

[11] http://developer.yahoo.com/search/boss/

[12] Lee H. Y., Lee H. K., Ha Y. H., Senior Member, IEEE. Spatial Color

Descriptor for Image Retrieval and Video Segmentation. IEEE Trans.

Multimedia, 5(3): 358–367, 2003.

[13] B.-Y. Ricardo, and R.-N. Berthier, Modern Information Retrieval, ACM

Press Book, 1999.

[14] R. K. Robert, Information Storage and Retrieval, John Wiley & Sons, Inc.

1993.

Proceedings of the World Congress on Engineering 2010 Vol I
WCE 2010, June 30 - July 2, 2010, London, U.K.

ISBN: 978-988-17012-9-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2010

