
 

 

 

 

 

Abstract—This is the first series of research papers to define 

multidimensional matrix mathematics, which includes 

multidimensional matrix algebra and multidimensional matrix 

calculus.  These are new branches of math created by the author 

with numerous applications in engineering, math, natural 

science, social science, and other fields.  Cartesian and general 

tensors can be represented as multidimensional matrices or vice 

versa.  Some Cartesian and general tensor operations can be 

performed as multidimensional matrix operations or vice versa.  

However, many aspects of multidimensional matrix math and 

tensor analysis are not interchangeable.  Part 2 of 6 defines 

multidimensional matrix equality as well as the 

multidimensional matrix algebra operations for addition, 

subtraction, multiplication by a scalar, and multiplication of two 

multidimensional matrices.  An alternative representation of the 

summation of quadratic terms using multidimensional matrix 

multiplication is described.   

 
Index Terms—multidimensional matrix math, 

multidimensional matrix algebra, multidimensional matrix 

calculus, matrix math, matrix algebra, matrix calculus, tensor 

analysis 

 

I. INTRODUCTION 

  Part 2 of 6 defines multidimensional matrix equality as well 

as the multidimensional matrix algebra operations for 

addition, subtraction, multiplication by a scalar, and 

multiplication of two multidimensional matrices.  Also, part 2 

of 6 describes an alternative representation of the summation 

of quadratic terms using multidimensional matrix 

multiplication.   

 

II. MULTIDIMENSIONAL MATRIX EQUALITY 

Two multidimensional matrices A and B are considered 

equal if and only if A and B have the same number of elements 

in each dimension or can be simplified such that they have the 

same number of elements in each dimension and all 

corresponding elements of these two multidimensional 

matrices are equal.  That is, aijk . . . q = bijk . . . q for 1   i   s, 1 

  j   t, 1   k   u, and so on until 1   q   z. 

Just like two tensors are equivalent when each 

corresponding component is equal, two multidimensional 
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matrices are equal when each corresponding element is equal.   

 

III. MULTIDIMENSIONAL MATRIX ADDITION 

 Multidimensional matrix addition is performed on an 

element-by-element basis.  Two multidimensional matrices 

can only be added if they have the same number of elements in 

each dimension or can be simplified such that they have the 

same number of elements in each dimension.  Consider the 

addition of two multidimensional matrices A and B where A + 

B = C.  The resulting sum matrix C will have the same number 

of elements in each dimension as A and B.  Its content is 

determined on an element-by-element basis with cijk . . . q = aijk . 

. . q + bijk . . . q for i = 1, 2, . . ., s; j = 1, 2, . . ., t; k = 1, 2, . . ., u; 

and so on until q = 1, 2, . . ., z.  

 In the following example, a 3-D matrix with dimensions of 

3 * 2 * 2 is added to another 3-D matrix with dimensions of 3 

* 2 * 2, and the result is a sum 3-D matrix with dimensions of 

3 * 2 * 2: 

1 4

2 5

3 6

7 10

8 11

9 12

  
  
  
   
 
  
  
  
    

 + 

2 8

4 10

6 12

14 20

16 22

18 24

  
  
  
   
 
  
  
  
    

 = 

3 12

6 15

9 18

21 30

24 33

27 36

  
  
  
   
 
  
  
  
    

 

 The addition of two tensors is equivalent to the addition of 

two multidimensional matrices with each corresponding 

component of each tensor being added like each 

corresponding element of each multidimensional matrix is 

added. 

 

IV. MULTIDIMENSIONAL MATRIX SUBTRACTION 

 Multidimensional matrix subtraction is performed on an 

element-by-element basis.  Two multidimensional matrices 

can only be subtracted if they have the same number of 

elements in each dimension or can be simplified such that they 

have the same number of elements in each dimension.  

Consider the subtraction of two multidimensional matrices A 

and B where A - B = C.  The resulting difference matrix C will 

have the same number of elements in each dimension as A and 

B.  Its content is determined on an element-by-element basis 

with = cijk . . . q = aijk . . . q - bijk . . . q for i = 1, 2, . . ., s; j = 1, 2, . . 

., t; k = 1, 2, . . ., u; and so on until q = 1, 2, . . ., z.  

 The subtraction of one tensor from another tensor is 

equivalent to the subtraction of one multidimensional matrix 

from another with each component of one tensor being 
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subtracted from the corresponding component of another 

tensor like each element of one multidimensional matrix is 

subtracted from the corresponding element of another 

multidimensional matrix. 

 

V. MULTIPLICATION  OF A MULTIDIMENSIONAL MATRIX BY A 

SCALAR 

 Multiplication of a multidimensional matrix by a scalar 

results in multiplying every element of the multidimensional 

matrix by the scalar. 

 In the following example, a 4-D matrix with dimensions of 

3 * 2 * 1 * 2 is multiplied by the scalar 5 with the resulting 4-D 

matrix with dimensions of 3 * 2 * 1 * 2 as shown: 

5 * 

1 4 7 10

2 5 , 8 11

3 6 9 12

    
    
    
        

 = 

5 20 35 50

10 25 , 40 55

15 30 45 60

    
    
    
        

 

 The multiplication of a tensor by a scalar is equivalent to 

the multiplication of a multidimensional matrix by a scalar 

with each component of the tensor being multiplied by the 

scalar like each element of the multidimensional matrix is 

multiplied by the scalar. 

 

VI. MULTIDIMENSIONAL MATRIX PRODUCT 

 In multidimensional matrix algebra, any two dimensions of 

two multidimensional matrices can be multiplied together.  

This section describes the multidimensional matrix product, 

which is an extension and generalization of the matrix product 

in classical matrix algebra.  Note that the multidimensional 

matrix outer product and multidimensional matrix inner 

product are described in separate sections in this series of 

research papers. 

A. Notation for Multidimensional Matrix Multiplication 

 In the equations below, A represents the first 

multidimensional matrix being multiplied, B represents the 

second multidimensional matrix being multiplied, and C 

represents the multidimensional matrix product. 

 Nd(M) is the number of elements in the dth dimension of 

multidimensional matrix M. 

 The variable da refers to the first and lower dimension 

being multiplied.  The variable db refers to the second and 

higher dimension being multiplied.  Therefore, db > da. 

 Therefore, the variable Nda(A) refers to the number of 

elements in the first dimension being multiplied in 

multidimensional matrix A, the variable Ndb(A) refers to the 

number of elements in the second dimension being multiplied 

in multidimensional matrix A, the variable Nda(B) refers to 

the number of elements in the first dimension being multiplied 

in multidimensional matrix B, and the variable Ndb(B) refers 

to the number of elements in the second dimension being 

multiplied in multidimensional matrix B.   

 The variable n is the number of elements in the second 

dimension being multiplied of the first multidimensional 

matrix A or the number of elements in the first dimension 

being multiplied of the second multidimensional matrix B.  

That is, n = Ndb(A) = Nda(B). 

B. Conformability Requirements for Multidimensional Matrix 

Multiplication 

 For the following conformability requirements, for any 1-D 

column vector, there is considered to be a second dimension 

having a size of one.  By the rules of multidimensional matrix 

simplification, these are equivalent multidimensional 

matrices. 

 The conformability requirements for multiplication of two 

multidimensional matrices are as follows: 

1. The number of elements in the second dimension being 

multiplied in the first multidimensional matrix must 

equal the number of elements in the first dimension being 

multiplied of the second multidimensional matrix.  That 

is, Ndb(A) = Nda(B).  Alternatively, one or both of the 

multidimensional matrices can be simplified such that the 

number of elements in the second dimension being 

multiplied of the first multidimensional matrix must 

equal the number of elements in the first dimension being 

multiplied of the second multidimensional matrix. 

 For example, if the first dimension and second 

dimension of multidimensional matrix A and 

multidimensional matrix B are being multiplied, then 

N2(A) = N1(B).  If the third dimension and fourth 

dimension of multidimensional matrix A and 

multidimensional matrix B are being multiplied, then 

N4(A) = N3(B).  If the first dimension and fourth 

dimension of multidimensional matrix A and 

multidimensional matrix B are being multiplied, then 

N4(A) = N1(B).   

2. The number of elements in each dimension not being 

multiplied in the first multidimensional matrix must 

equal the number of elements in the same dimension not 

being multiplied in the second multidimensional matrix.  

Alternatively, one or both of the multidimensional 

matrices can be simplified such that the number of 

elements in each dimension not being multiplied in the 

first multidimensional matrix must equal the number of 

elements in the same dimension not being multiplied in 

the second multidimensional matrix.   

 For example, if the first dimension and second 

dimension of multidimensional matrix A and 

multidimensional matrix B are being multiplied, then 

Nd(A) = Nd(B) for d >= 3.  If the third dimension and 

fourth dimension of multidimensional matrix A and 

multidimensional matrix B are being multiplied, then 

Nd(A) = Nd(B) for d = 1, d = 2, and d >= 5.  If the first 

dimension and fourth dimension of multidimensional 

matrix A and multidimensional matrix B are being 

multiplied, then Nd(A) = Nd(B) for d = 2, d = 3, and d >= 

5.   

 If conformability requirements are not met, two 

multidimensional matrices cannot be multiplied and their 

product is nonexistent. 

 If conformability requirements are met, in the resulting 

multidimensional matrix product, the number of dimensions 

is equal to the number of dimensions in the first or second 

matrix being multiplied.   

C. Number of Elements in Each Dimension of 

Multidimensional Matrix Product 

 The number of elements in the first dimension being 

multiplied in the first multidimensional matrix provides the 
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number of elements in the corresponding dimension of the 

multidimensional matrix product.  That is, Nda(C) = Nda(A).  

The number of elements in the second dimension being 

multiplied in the second multidimensional matrix provides the 

number of elements in the corresponding dimension of the 

multidimensional matrix product.  That is, Ndb(C) = Ndb(B).  

The number of elements in each other dimension of the 

multidimensional matrix product is equal to the number of 

elements in the same dimension of the first or second 

multidimensional matrix being multiplied. 

 For example, consider the case in which the first and second 

dimensions of multidimensional matrix A and 

multidimensional matrix B are being multiplied.  Then the 

number of elements in the first dimension of multidimensional 

matrix product C is equal to the number of elements in the 

first dimension of multidimensional matrix A.  That is, N1(C) 

= N1(A).  The number of elements in the second dimension of 

multidimensional matrix product C is equal to the number of 

elements in the second dimension of multidimensional matrix 

B.  That is, N2(C) = N2(B).  The number of elements in other 

dimensions of multidimensional matrix product C is equal to 

the number of elements in corresponding dimensions of 

multidimensional matrix A or multidimensional matrix B.  

That is, Nd(C) = Nd(A) = Nd(B) for d >= 3. 

 Consider the case in which the second and fifth dimensions 

of multidimensional matrix A and multidimensional matrix B 

are being multiplied.  Then the number of elements in the 

second dimension of multidimensional matrix product C is 

equal to the number of elements in the second dimension of 

multidimensional matrix A.  That is, N2(C) = N2(A).  The 

number of elements in the fifth dimension of 

multidimensional matrix product C is equal to the number of 

elements in the fifth dimension of multidimensional matrix B.  

That is, N5(C) = N5(B).  The number of elements in other 

dimensions of multidimensional matrix product C is equal to 

the number of elements in corresponding dimensions of 

multidimensional matrix A or multidimensional matrix B.  

That is, Nd(C) = Nd(A) = Nd(B) for d  = 1, 3, 4 and for d >= 6. 

D. Multidimensional Matrix Multiplication 

 In classical matrix algebra, each individual element of a 

matrix product is determined as follows: 

1

*

n

ij ix xj

x

c a b



  

In this equation, n is the number of elements in the second 

dimension of the first matrix or the number of elements in the 

first dimension of the second matrix. 

 The equation for multiplication of classical matrices can be 

extended to multiplication of multidimensional matrices.  

Each individual element in the multidimensional matrix 

product is determined as follows: 
. . .ijk qc   

. . . where replaces index of . . . where replaces index of 

1

*

n

ijk q x db ijk q x da

x

a b





In this equation, for aijk . . . q, the variable x replaces one of the 

indices, i, j, k, . . ., q, that corresponds to the second dimension 

being multiplied, db.  Also, in this equation, for bijk . . . q, the 

variable x replaces one of the indices, i, j, k, . . ., q, that 

corresponds to the first dimension being multiplied, da.   

 For example, let da = 1 and db = 4.  Then in this equation, 

for aijk . . . q, the variable x replaces the index l.  Also, in this 

equation, for bijk . . . q, the variable x replaces the index i.  The 

resulting equation follows: 

. . .

1

n

ijk q

x

c



 . . . . . .*ijkx q xjkl qa b  

 It is important to note that the equation for multiplication of 

classical matrices is just a special case of the equation for 

multiplication of multidimensional matrices: 

1

n

ij

x

c



 *ix xja b  

 According to the equation for multiplication of 

multidimensional matrices, when the first dimension and 

second dimension of multidimensional matrices are 

multiplied, corresponding 2-D submatrices, occupying the 

same relative positions with respect to third and higher 

dimensions in both matrices being multiplied, are multiplied 

together using the matrix multiplication method of classical 

matrix algebra. 

 Consider the case where the first dimension and second 

dimension are multiplied for a 4-D matrix A with dimensions 

of 2 * 3 * 2 * 2 and a 4-D matrix B with dimensions of 3 * 2 * 

2 * 2.  This meets the conformability requirements for 

multidimensional matrix multiplication because N2(A) = 

N1(B), N3(A) = N3(B), and N4(A) = N4(B).  As shown below, 

this multidimensional matrix operation results in a 4-D matrix 

C with dimensions of 2 * 2 * 2 * 2.   

 The following equation is used for multiplication of the first 

dimension and second dimension of these two 4-D matrices: 

1

*

n

ijkl ixkl xjkl

x

c a b



  

where n = Ndb(A) = Nda(B) = 3 

 

When the first dimension and second dimension of multidimensional matrices are being multiplied, this is equivalent to 

multiplying corresponding 2-D submatrices using the matrix multiplication method of classical matrix algebra as shown: 

1 3 5 13 15 17
,

2 4 6 14 16 18

7 9 11 19 21 23
,

8 10 12 20 22 24

    
    

    
    
    
     

 *(1, 2) 

24 21 12 9

23 20 , 11 8

22 19 10 7

18 15 6 3

17 14 , 5 2

16 13 4 1
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= 

1 24 3 23 5 22 1 21 3 20 5 19 13 12 15 11 17 10 13 9 15 8 17 7
,

2 24 4 23 6 22 2 21 4 20 6 19 14 12 16 11 18 10 14 9 16 8 18 7

7 18 9 17 11 16 7 15 9 14 11 13
,

8 18 10 17 12 16 8 15 10 14 12 13

                      
   
                      

          
 
          

19 6 21 5 23 4 19 3 21 2 23 1

20 6 22 5 24 4 20 3 22 2 24 1

 
 
 
           
  

            

 

= 

203 176 491 356
,

272 236 524 380

455 374 311 122
,

506 416 326 128

    
    
    

    
    
     

 

 

 In classical matrix algebra, matrix multiplication always 

involves the first dimension and second dimension because 

there are no other dimensions involved in classical matrix 

algebra.  In multidimensional matrix algebra, when the first 

dimension and second dimension of multidimensional 

matrices are being multiplied, the subscripted dimensions in 

parentheses “(1, 2)” by the multiplication sign can be omitted.  

And if the subscripted dimensions in parentheses “(1, 2)” can 

be omitted, then the multiplication sign can be omitted.  That 

is, A *(1, 2) B = A * B = AB.  This makes the notation for 

multiplication of 2-D matrices in multidimensional matrix 

algebra consistent with classical matrix algebra.   

 The following example shows how the subscripted 

dimensions “(1, 2)” in parentheses by the multiplication sign 

can be omitted when the first dimension and second 

dimension of multidimensional matrices are being multiplied: 

 

 

1 2

3 4

 
 
  

 *(1, 2) 

1

2

3

4

  
  
  

  
  
   

  

= 
 

 

1 2

3 4

 
 
  

 * 

1

2

3

4

  
  
  

  
  
   

 = 
 

 

1 2

3 4

 
 
  

 

1

2

3

4

  
  
  

  
  
   

 

 Consider the case where the first dimension and fourth 

dimension are multiplied for a 4-D matrix A with dimensions 

of 1 * 2 * 2 * 3 and a 4-D matrix B with dimensions of 3 * 2 * 

2 * 1.  This meets the conformability requirements for 

multidimensional matrix multiplication because N2(A) = 

N1(B), N3(A) = N3(B), and N4(A) = N4(B).  As shown below, 

this multidimensional matrix operation results in a 4-D matrix 

C with dimensions of 1 * 2 * 2 * 1 or dimensions of 1 * 2 * 2 

by the rules of multidimensional matrix simplification.   

 The following formula is used for multiplication of the third 

dimension and fourth dimension of these two 4-D matrices: 

1

*

n

ijkl ijkx xjkl

x

c a b



  

where n = Ndb(A) = Nda(B) = 3 

 

     

     

1 2 , 3 4 , 5 6

7 8 , 9 10 , 11 12

 
 
  

 *(3, 4) 

1 2

3 4

5 6

7 8

9 10

11 12

  
  
  
   
 
  
  
  
    

 

 = 
 

 

35 56

251 308

 
 
  

 

  

VII. MULTIDIMENSIONAL MATRIX PRODUCT 

 A summation of quadratic terms can be alternatively 

represented using multidimensional matrix multiplication. 

  The following equation is used for neural network 

applications.  Variables xi,and xj are inputs and wij are weights 

for these inputs: 
3 3

1 1

ij i j

i j

w x x

 

  

= w11x1
2
 + w12x1x2 + w13x1x3 + w21x2x1 + w22x2

2
 + w23x2x3 + 

w31x3x1 + w32x3x2 + w33x3
2
 

= w11x1
2
 + w22x2

2
 + w33x3

2
 + x1x2 (w12 + w21) + x1x3 (w13 + w31) 

+ x2x3 (w23 + w32)
 

 This weighted summation is easily represented using 

classical matrices multiplied together: 

3 3

1 1

ij i j

i j

w x x

 

 =  
11 12 13 1

1 2 3 21 22 23 2

31 32 33 3

* *

w w w x

x x x w w w x

w w w x

   
   
   
      

 

 It is extremely useful to express these weighted summations 

as matrices multiplied together to eliminate unnecessary 

terms in neural network designs.  Because both the weights wij 

and wji in the matrix above correspond to the same 

second-order term xixj, it is sufficient to use only an upper 

triangular or lower triangular matrix.   For instance, instead of 

separately determining values for w12 and w21, both of which 

are weights for x1x2, one can eliminate one of these weights 

and determine a value for either w12 or w21 that would be as 

much as both of these combined if they were computed 

separately.  The same applies for other redundant weights.  

This saves time in the neural network’s intensive procedure of 

computing weights.   

 However, the following equation and more complicated 

equations used for neural network applications cannot be 

expressed using classical matrices.  Variables xi, xj, and xk are 

inputs and wijk are weights for these inputs. 
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2 2 2

1 1 1

ijk i j k

i j k

w x x x

  

   

= w111x1
3
 + w112x1

2
x2 + w121x1

2
x2 + w122x1x2

2
 + w211x1

2
x2 + 

w212x1x2
2
 + w221x1x2

2
 + w222x2

3 

= w111x1
3
 + x1

2
x2 (w112 + w121 + w211) + x1x2

2
 (w122+ w212 + w221) 

+ w222x2
3 

 This weighted summation can be alternatively represented 

using multidimensional matrices multiplied together.  

Premultiply the 2 * 2 * 2 weight matrix by a 1 * 2 * 2 input 

matrix in the first dimension and second dimension.  Then 

postmultiply the 2 * 2 * 2 weight matrix by a 2 * 1 * 2 input 

matrix in the first dimension and second dimension.  

Premultiply this entire product by a 1 * 2 input matrix in the 

first dimension and second dimension.  Note that because the 

first dimension and second dimension of these 

multidimensional matrices are being multiplied, this does not 

need to be indicated in the equations below. 
2 2 2

1 1 1

ijk i j k

i j k

w x x x

  

  

=  
 

 

111 121 1

1 2 211 221 2

1 2

112 122 11 2

212 222 2

* * *

w w x

x x w w x
x x

w w xx x

w w x

       
               
                             

 

 The multidimensional matrix product of the first dimension 

and second dimension of the 1 * 2 * 2 input matrix and the 2 * 

2 * 2 weight matrix results in a 1 * 2 * 2 matrix. 
2 2 2

1 1 1

ijk i j k

i j k

w x x x

  

  

=  1 2 *x x  

 

 

1

111 1 211 2 121 1 221 2 2

1112 1 212 2 122 1 222 2

2

*

x

w x w x w x w x x

xw x w x w x w x

x

   
        
                 

 

 The multidimensional matrix product of the first dimension 

and second dimension of the 1 * 2 * 2 matrix and the 2 * 1 * 2 

input matrix results in a 1 * 1 * 2 matrix. 
2 2 2

1 1 1

ijk i j k

i j k

w x x x

  

  

=  
2 2

1 2

2 2

1 2

111 211 1 2 121 1 2 221

1 2

112 212 1 2 122 1 2 222

*
w x w x x w x x w x

x x
w x w x x w x x w x

     
 
      

 

 The 1 * 1 * 2 matrix can be simplified into a 1-D matrix 

with 2 elements, so it can be premultiplied by the 1 * 2 input 

matrix in the first dimension and second dimension. 

 
2 2 2

1 1 1

ijk i j k

i j k

w x x x

  

  

=  
2 2

1 2

2 2

1 2

111 211 1 2 121 1 2 221
1 2

112 212 1 2 122 1 2 222
*

w x w x x w x x w x
x x

w x w x x w x x w x

 

 

 
 

 
 

= w111x1
3
 + w112x1

2
x2 + w121x1

2
x2 + w122x1x2

2
 + w211x1

2
x2 + 

w212x1x2
2
 + w221x1x2

2
 + w222x2

3 

= w111x1
3
 + x1

2
x2 (w112 + w121 + w211) + x1x2

2
 (w122+ w212 + w221) 

+ w222x2
3 

 Thus, this multidimensional matrix multiplication yields 

the same result as the summation of quadratic terms above. 

 

VIII. CONCLUSION 

 Part 2 of 6 defined multidimensional matrix equality as well 

as the multidimensional matrix algebra operations for 

addition, subtraction, multiplication by a scalar, and 

multiplication of two multidimensional matrices.  Also, part 2 

of 6 described an alternative representation of the summation 

of quadratic terms using multidimensional matrix 

multiplication.   

 Part 3 of 6 defines the multidimensional null matrix and 

multidimensional identity matrix.  Also, part 3 of 6 defines the 

multidimensional matrix algebra operations for outer product 

and inner product. 
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