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Multidimensional Matrix Mathematics:
Multidimensional Matrix Transpose, Symmetry,
Antisymmetry, Determinant, and Inverse,
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In classical matrix algebra, the transpose operation always
involves the first dimension and second dimension because
there are no other dimensions involved in classical matrix
algebra. In multidimensional matrix algebra, when the first
dimension and second dimension of multidimensional
matrices are being transposed, the subscripted dimensions in
parentheses “(1, 2)” by the multiplication sign can be omitted.
Thatis, AT 2 = AT, This makes the notation for transpose of
2-D matrices in multidimensional matrix algebra consistent
with classical matrix algebra.

If we take the transpose of the third dimension and fourth
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If we take the transpose of the first dimension and fourth
dimension of multidimensional matrix A, the resulting 6-D
matrix E has dimensionsof 1 *2*2*2*2*2 IfE=ATY,
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B. Transpose Laws of Multidimensional Matrix Algebra

The multidimensional matrix transpose laws follow:
Multidimensional Matrix Transpose Law #1:
(AT(x, Y))T(X, N=A
Multidimensional Matrix Transpose Law #2:
(OLA)T(X’ Y = AT Y
Multidimensional Matrix Transpose Law #3:
(A+ B)T(X’ V= AT&Y) 4 gTY)

C.Proofs of Multidimensional Matrix Transpose Laws

The following definitions are used in the following
transpose laws and their proofs:

Eijk...q(A) refers to the element with indices i, j, k, .

multldlmensmnal matrix A.
Eilk . .. q with x & y tensposed (AT Y) refers to the element with
indices i, j, k, . . ., g, but with the xth dimension and yth
dimension transposed. The xth dimension and yth dimension
can be any two different dimensions.

For example, if x=2 and y=4, then the second and fourth
dimensions of multidimensional matrix A are being
transposed and for any element of A, Eju . .
transposed(AT )) EI q(AT @ 4) - Ijkl q(A)

Multidimensional matrix transpose law #1, (AT®)T®Y =
A, is proven as follows:

For any element of A and for any dimensions x and y:

Ele q[(AT(X Y))T(X' y)] = Eijk ... qwith x&ytransposed(AT(Xy y))

- Euk q(A)

Because Ejy. . [(AT*)T ] = Ej o(A) for any element of
A and for any dimensions x and y, then (AT®))T&Y = A

Multidimensional matrix transpose law #2, (aA)'™ ¥

= oA™Y is proven as follows:

For any element of A and for any dimensions x and y:

Eijk ... q[(OLA)T(X’ y)] = Ejjk. .. qwith x & y transposed(CLA)

= o * Ejjk .. qwith x &y transposed(A)

= * Ej. .. q(AT(X' Y))

Because Ejj . q[(aA)™ Y] = o Ej . (AT Y) for any
element of A and for any dimensions x and y, then (a.A)™™
N —o AT &9

Multidimensional matrix transpose law #3, (A + B)™®Y) =
ATEY + BT®Y) s proven as follows:

For any element of A and for any dimensions x and y:
Eijk.. q[(A + B)T(X y)] = ljk qW|thx&ytransposed(A + B)

. gin

. q with x & y

= Eijk . qwith x &gltransposed(A) + Eljk .qwithx &y transposed(B)
= Ejj.. q(A Xy)+E (BTXY)
- Eljk ('A\T()< Y + BT . y)

Because Ej[(A + B)™ V] = E(A™® Y + BT Y) for any

element of A and for any dimensions x and y, then (A + B)™®
= AT®Y) 4 gTY).

I1l. SYMMETRY AND ANTISYMMETRY OF
MULTIDIMENSIONAL MATRICES

Just like a tensor can be symmetric or antisymmetric with
respect to any two indices, a multidimensional matrix can be
symmetric or antisymmetric with respect to any two indices.

Let da and db be any two dimensions being transposed. A
multidimensional matrix A is symmetric with respect to the
two indices da and db if aijklmnop = aijklmnop with da & db transposed- A
multidimensional matrix A is antisymmetric with respect to
the two indices da and db if
Qjjkimnop = = Qijkimnop with da & db transposed:

For example, a multidimensional matrix A is symmetric
with respect to the two indices i and j if &jjamnop = @jikimnop-
Also, for example, a multidimensional matrix A is
antisymmetric with respect to the two indices i and j if ajjmnop
= -Qjikimnop-

The following multidimensional matrix B is symmetric
with respect to the two indices i and j because bjjq = bjuq for all
i,j, k andI:
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The following multidimensional matrix C is symmetric

with respect to the two indices j and k because Cijq = Cig for all
i, ],k and I:

MR
2ol

The following multidimensional matrix D is antisymmetric

with respect to the two indices i and j because dijq = -djiq for
alli, j, k,and I:

ol
ol

For multidimensional matrix D to be antisymmetric (djq =
-jii), it is necessary that diig = 0 for all i, k, and I. That s, d;y
=0, dyyy=0forall kand I.

The following multidimensional matrix E is antisymmetric
with respect to the two indices j and k because ey = -ej; for
all'i, j, k,and I:

o3 lo
BRI

For multidimensional matrix E to be antisymmetric (ej =

-Bikj1), It is necessary that e = 0 for all i, j, and I. That is, ej1y
=0, ey =0foralliandl.

IV. MULTIDIMENSIONAL MATRIX DETERMINANT

The multidimensional matrix determinant for a 1-D matrix
is undefined. The multidimensional matrix determinant of a
2-D square matrix results in a scalar and is calculated using
the standard means in classical matrix algebra. The
multidimensional matrix determinant of a 2-D nonsquare
matrix is undefined. For the multidimensional matrix
determinant of multidimensional matrices with three or more
dimensions, each 2-D square submatrix is replaced by its
scalar determinant and each 2-D nonsquare submatrix is
replaced by an undefined element.

Consider two multidimensional matrices A and B where B
is the multidimensional matrix determinant of A:

B =|A|

Multidimensional matrix determinant B has
dimensions less than multidimensional matrix A:

q(B) = q(A) — 2 for q(A) > 3 where g represents the number
of dimensions of the matrix in parentheses.

Ng(B) = Ng:2(A) for d+2 =3, .. ., g(A) where N represents the
number of elements in the subscripted dimension for the
matrix in parentheses and g(A) is the number of dimensions of
multidimensional matrix A.

two
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The multidimensional matrix determinant of the following
5-D matrix with dimensionsof2*2*2 *2 * 2 results ina 3-D
matrix with dimensions of 2 * 2 * 2 and is calculated as
follows:

1 5] [6 2
18 0] |4 5]
(2 3] [0 7] 1#0-5%8 6x5-2x4
17 6]'|9 4 {2*6—3*7 0*4_7*9}
To 21 [8 0]]| |[9%1-2%8 8%2-0%5
8 1| |5 2] {6*0—7*3 1*2-6*3}
6 7] [1 6]
3 0] [3 2|
[ [-40 22
Lo —63}
-7 16
21 —16}

The multidimensional matrix determinant of the following
3-D matrix with dimensions of 2 * 4 * 2 results in a 1-D matrix
with two undefined elements:

5317

{3 2 2 8}

A multidimensional matrix determinant is simply a
multidimensional matrix of determinants for each 2-D square
submatrix within the multidimensional matrix.

The properties of determinants in classical matrix algebra
apply to each 2-D square submatrix within the
multidimensional matrix:

For a 2-D square submatrix A, |A] = |A]

If all the elements of any row or column are zero in a 2-D
square submatrix A, then |A| = 0.

If one row is proportional to another row of a 2-D square
submatrix A, then |A| = 0.

If one column is proportional to another column of a 2-D
square submatrix A, then |A| = 0.

If one row is a linear combination of one or more other rows
of a 2-D square submatrix A, then |A| = 0.

If one column is a linear combination of one or more other
columns of a 2-D square submatrix A, then |A| = 0.

If two rows of a 2-D square submatrix A are interchanged, the
sign of the determinant of submatrix A is changed.

If two columns of a 2-D square submatrix A are interchanged,
the sign of the determinant of submatrix A is changed.

If all elements of a row of a 2-D square submatrix A are
multiplied by a scalar o, the determinant of submatrix A is
multiplied by o

If all elements of a column of a 2-D square submatrix A are
multiplied by a scalar o, the determinant of submatrix A is
multiplied by a.

Any multiple of a row of a 2-D square submatrix A can be
added to any other row without changing the value of the
determinant for submatrix A.

Any multiple of a column of a 2-D square submatrix A can be
added to any column without changing the value of the
determinant for submatrix A.

16 47
4 0 9 6 _ | undefined
undefined
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V.MULTIDIMENSIONAL MATRIX INVERSE

The multidimensional matrix inverse for a 1-D matrix is
undefined. The multidimensional matrix inverse of a 2-D
matrix exists if it is a square matrix and has a nonzero
determinant, and is calculated using the standard means in
classical matrix algebra. For the multidimensional matrix
inverse of multidimensional matrices with three or more
dimensions, each 2-D square submatrix with a nonzero
determinant is replaced by its inverse and any other 2-D
submatrices or 1-D submatrices are replaced by an undefined
element.

Consider the following 4-D matrix A with dimensions of 2
*2*2*2:

(1 3] [9 11
|12 4}’ LO 12}
(5 7] [13 15
|6 8}’ {14 16}
The four 2-D square submatrices of A are
[ feee{fs e[l 2}
2 4| """ 6 8| 7|10 12|
A= Hm 15“
14 16
The inverse of each 2-D square submatrix is calculated
using standard methods in classical matrix algebra:

-1
L AdiA) _[[1 3] 1[4 -2]"
All - 0. 1 - - = =
|Adi] 2 4 2|3 1

Ay =

o 3
_ 2
T
2

The inverses of the other three 2-D square submatrices in A
are as follows:

Ayt = 5| Apt= 9 Ayt = 13
3 2 5 2 -2
2 2 2

The inverse of multidimensional matrix A consists of the
four inverted 2-D square submatrices:

o 3| U1
2 2
1 s 2
Ao L2l L2
4 |8 B
2 2
s S|, -8
L 21 L 2

In classical matrix algebra, if a matrix has an inverse and
that matrix is multiplied by its inverse, the product is an
identity matrix with the same dimensions. That is, AA™ =
A'A=1,

The same applies to each 2-D submatrix in a
multidimensional matrix. Because multidimensional matrices
are a concatenation of 2-D submatrices, if a multidimensional

matrix has an inverse and that multidimensional matrix is
multiplied by its inverse in the first dimension and second
dimension, then the product will be a multidimensional
identity matrix with the same dimensions. That is, A *4 2 Al
= Al *, )A=AAT= ATA = UNIT.

Multiplying the first dimension and second dimension of
multidimensional matrix A by multidimensional matrix A
results in a multidimensional identity matrix UNIT g «x 52 1,

2)-

o 3l 1
2 2
1 3] [9 1 al -
=l 3]s 2
api | 2 4o 2T ] [
5 7] [13 15 4 1 [ B
6 8] [14 16 2 2
3 2| |7 23

LT o2 L 2]

VI. CONCLUSION

Part 4 of 6 defined the multidimensional matrix algebra
operations for transpose, determinant, and inverse. Also, part
4 of 6 defined multidimensional matrix symmetry and
antisymmetry.

Part 5 of 6 describes the commutative, associative, and
distributive laws of multidimensional matrix algebra.
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