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Abstract—This is the first series of research papers to define 

multidimensional matrix mathematics, which includes 

multidimensional matrix algebra and multidimensional matrix 

calculus.  These are new branches of math created by the author 

with numerous applications in engineering, math, natural 

science, social science, and other fields.  Cartesian and general 

tensors can be represented as multidimensional matrices or vice 

versa.  Some Cartesian and general tensor operations can be 

performed as multidimensional matrix operations or vice versa.  

However, many aspects of multidimensional matrix math and 

tensor analysis are not interchangeable.  Part 6 of 6 describes 

the solution of systems of linear equations using 

multidimensional matrices.  Also, the multidimensional matrix 

calculus operations for differentiation and integration are 

defined. 

 
Index Terms—multidimensional matrix math, 

multidimensional matrix algebra, multidimensional matrix 

calculus, matrix math, matrix algebra, matrix calculus, tensor 

analysis 

 

I. INTRODUCTION 

  Part 6 of 6 describes the solution of systems of linear 

equations using multidimensional matrices.  Also, part 6 of 6 

defines the multidimensional matrix calculus operations for 

differentiation and integration. 

 

II. SOLVING SYSTEMS OF LINEAR EQUATIONS WITH 

MULTIDIMENSIONAL MATRICES 

 Systems of linear equations can be represented and solved 

with multidimensional matrices. 

 Consider the following system of linear equations: 

x11 + 5x21 + 3x31 = 10 

2x11 + 7x21 + 4x31 = 15 

5x11 + 2x21 + 8x31 = 7 

10x12 + 4x22 + 3x32 = 13 

8x12 + 5x22 + x32 = 18 

2x12 + 6x22 + 9x32 = 19 

 This system of linear equations can be represented with the 

following multidimensional matrix equation composed of 3-D 

matrices: 
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 Any of the different methods used to solve systems of linear 

equations represented with classical matrices can be applied 

to each of the submatrices in multidimensional matrices.  This 

includes graphing, the substitution method, the elimination 

method, Gaussian elimination, Gauss-Jordan elimination, 

Cramer’s rule, LU decomposition, Cholesky decomposition, 

etc. 

 The preceding system of linear equations can be 

represented with the following augmented 3-D matrix: 
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 Using Gauss-Jordan elimination on each of the individual 

2-D submatrices in the augmented 3-D matrix, the reduced 

row echelon form for this augmented multidimensional matrix 

can be found: 
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 Consider the following system of linear equations: 

a11111x1111 + a12111x2111 + a13111x3111 = b1111 

a21111x1111 + a22111x2111 + a23111x3111 = b2111 

a31111x1111 + a32111x2111 + a33111x3111 = b3111 

a11121x1121 + a12121x2121 + a13121x3121 = b1121 

a21121x1121 + a22121x2121 + a23121x3121 = b2121 
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a31121x1121 + a32121x2121 + a33121x3121 = b3121 

a11211x1211 + a12211x2211 + a13211x3211 = b1211 

a21211x1211 + a22211x2211 + a23211x3211 = b2211 

a31211x1211 + a32211x2211 + a33211x3211 = b3211 

a11221x1221 + a12221x2221 + a13221x3221 = b1221 

a21221x1221 + a22221x2221 + a23221x3221 = b2221 

a31221x1221 + a32221x2221 + a33221x3221 = b3221 

a11112x1112 + a12112x2112 + a13112x3112 = b1112 

a21112x1112 + a22112x2112 + a23112x3112 = b2112 

a31112x1112 + a32112x2112 + a33112x3112 = b3112 

a11122x1122 + a12122x2122 + a13122x3122 = b1122 

a21122x1122 + a22122x2122 + a23122x3122 = b2122 

a31122x1122 + a32122x2122 + a33122x3122 = b3122 

a11212x1212 + a12212x2212 + a13212x3212 = b1212 

a21212x1212 + a22212x2212 + a23212x3212 = b2212 

a31212x1212 + a32212x2212 + a33212x3212 = b3212 

a11222x1222 + a12222x2222 + a13222x3222 = b1222 

a21222x1222 + a22222x2222 + a23222x3222 = b2222 

a31222x1222 + a32222x2222 + a33222x3222 = b3222 

 

 

This system of linear equations can be represented with this single multidimensional matrix equation composed of 5-D matrices: 
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 When each element aijklm of the coefficient matrix and each 

element bjklm of the product matrix is defined, each element 

xjklm of the variable matrix can be calculated.  Any of the 

different methods used to solve systems of linear equations 

represented with classical matrices can be applied to each of 

the submatrices in multidimensional matrices.  The system of 

linear equations can be solved like in the preceding example.   

 

III. MULTIDIMENSIONAL MATRIX DIFFERENTIATION 

 In multidimensional matrix calculus, multidimensional 

matrices are differentiated by finding the derivative of each 

element in the multidimensional matrix.  The result is a 

multidimensional matrix of derivatives.  The resulting 

multidimensional matrix has the same number of dimensions 

and same number of elements in each dimension as the 

multidimensional matrix that is differentiated. 

 A 3-D matrix with dimensions of 2 * 2 * 2 is differentiated 

as follows: 
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IV. MULTIDIMENSIONAL MATRIX INTEGRATION 

 In multidimensional matrix calculus, multidimensional 

matrices are integrated by finding the integral of each element 

in the multidimensional matrix.  The result is a 

multidimensional matrix of integrals.  The resulting 

multidimensional matrix has the same number of dimensions 

and same number of elements in each dimension as the 

multidimensional matrix that is integrated. 

 A 3-D matrix with dimensions of 2 * 2 * 2 is integrated as 

follows: 
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V. CONCLUSION 

Part 6 of 6 described the solution of systems of linear 

equations using multidimensional matrices.  Also, part 6 of 6 

defined the multidimensional matrix calculus operations for 

differentiation and integration. 

 Classical matrix math offers many benefits not present in 

tensor analysis for a first or second order tensor, and tensor 

analysis for a first or second order tensor offers many benefits 

not present in classical matrix math.  Similarly, 

multidimensional matrix math offers many benefits not 

present in tensor analysis for tensors of any order, and tensor 

analysis for tensors of any order offers many benefits not 

present in multidimensional matrix math.   

 The author predicts that multidimensional matrix math will 

replace classical matrix math in the future when this subject is 

taught in university courses.  The author has made many more 

developments in multidimensional matrix math and 

developed many more innovative applications of 

multidimensional matrix math that will soon be published.   
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 Numerous applications have been developed for classical 

matrix math and its subsets, classical matrix algebra and 

classical matrix calculus, in many extremely diverse fields.  

Similarly, numerous applications in many extremely diverse 

fields will emerge for multidimensional matrix math and its 

subsets, multidimensional matrix algebra and 

multidimensional matrix calculus.  These new branches of 

math will make it easier to solve many problems than before 

and even solve problems that couldn’t be solved before. 
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