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Asymptotic Expansion for Thermal Flow through a Pipe

Sanja Marusi¢ *, Eduard Marusi¢-Paloka fand Igor Pazanin®

AbstractWe study the convection-diffusion equation
in a thin or long pipe. The Reynolds number is chosen
in a way that the effects of dispersion appear. We
derive a complete asymptotic expansion leading to an
approximation of arbitrary order.
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1 Introduction

Motion of a fluid through a thin or long pipe, with heat
exchange between the fluid and the surrounding medium
is an important problem appearing in numerous engineer-
ing applications like air conditioners, refrigeration sys-
tems, central heating radiators and different kind of heat
exchangers appearing in cars, ships, industrial facilities
etc. Mathematically, such problem can be described by
convection-diffusion equation, with Robin boundary con-
dition describing the heat exchange between the fluid and
it’s surrounding. We cannot expect an exact solution
of the model described by parabolic partial differential
equation. Thus we use the perturbation technique with
respect to the small parameter € describing the ratio be-
tween the pipe’s length and it’s thickness. Our goal is to
derive a complete asymptotic expansion giving very accu-
rate approximation for the model. Different flow regimes
lead to different models, as described in [2]. For low
Reynolds number (slow flow) the convection term dis-
appears from the model, for large Reynolds numbers the
convection dominates the process and it can be described
as a simple transport of heat. However, for "moderate”
Reynolds numbers booth effects (diffusion and convec-
tion) should be taken into account. It turns out that the
most interesting effects appear for Reynolds number Re®
proportional to 1/e , i.e. for

Re® = 'Re°

In that case the effects of dispersion appear, i.e. the ef-
fective diffusion coeflicient appearing in a macroscopic
model contains a term proportional to the convection ve-
locity. That effect is known as the Taylor dispersion and
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it has been studied by different authors, mostly in context
of a solute transport governed by Fick diffusion and sim-
ple convection, which is described by very similar model.
The pioneer researcher G.I. Taylor [11] first discussed the
dispersion of the solute flowing in a straight pipe with
circular cross-section. The effective equations describing
such problem are formally derived in [1] via the method
of moments. Numerous researchers have examined the
heat transfer and flow characteristics in pipes both the-
oretically and experimentally (see e.g. [9], [10], [7]). A
nice review of the work done on this subject is given by
Naphon and Wongwises [6] and we refer the reader to
the large list of references therein. We also mention that,
recently, rigorous derivation of the first order asymptotic
approximation for a reactive solute transport in a nar-
row 2D channel is presented in [5]. We derive here higher
order approximations.

2 The problem

The pipe with thickness € and a cross-section €S is de-
noted

Q.=0,1[xeS , SCR?, (z,y,2) € Q. .

Assuming that the fluid flow has the Poisseuile form (clas-
sical parabolic profile flow of a viscous liquid through a
pipe), we describe the process by equation in an adimen-
sionalised form

06°

— A§E
o A0
+Re® Prw® o =0 in QF (1)
gon = Nu (G —6°) onTT (2)
7 =]0,1[x d(¢ S) x 0, T
0°=hy for =k, k=0,1 (3)
0 =0p(x) fort=0. (4)

w®(y,z,t) = w(y/e, z/e,t) Poiseuille velocity
2.1 Asymptotic expansion

We rewrite the problem on the pipe with unit thickness

by change of variables: & = y/e , & = z/e. Us-
. . 2 2
ing the notations: Ag = a% + a% , n% = nya%l +
nz% ) ee(l',g,t):96($,€€1,6£2,t)
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Q:]O,l[xS R SCR2 , (:Z?,fl,fg)EQ

such form is suitable for asymptotic analysis:

E 20¢

32 — a% AOF — % +

+§ Re® Prw 8825 =0 in QF (5)
Ziz =¢Nu (G —-06°) onT? (6)
I'T =]0,1[ x 0S8 x 10, T

©°=hy for z=k, k=0,1 (7)
©° =0Gy(x) fort=0. (8)

A standard approach to derive an approximation for such
problem is to postulate an asymptotic expansion in pow-
ers of e:

O°(2,&,1) = Oo(w,&,t) + Y " Op(x, 1)

k=1

(9)

Collecting equal powers of € leads to a recursive sequence
of equations:

8% : AgOg in S, @:O on 98
61’15
1 —AO+ ReOPrw% =0 inS
00
aT; = Nu (G —0q) onds
09 9%0,
S T
+Re° Prwﬁ =0inS
ox
@—kNu@l =0 ondS
81’15
00y, 920,
ek 78t A§®k+2 2
-I—ReOPrwa@k+1 =0
ox
00
6‘1::2 = —NuBg41
It follows that
6O = @O(mvt)
01 =A41,(6) e + Bjo(§) (G — ©0)
A¢Al g = Re’ Pr(w — (w)) in S
Al
e =0 on 98 | (f)zﬁfsfdf
Ang(;O = Nul&l in §
3(;30,0 = Nu on 0S5
ne
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00 00
02 = A7 (&) + A3 0(6) 55
g
+B3(€)(G = 6o) + B%,o(f)%(G —0g) +
a 0 0
+AL1(8) 5 5; Qo + Bia(€) 77 (G = o)

90 9\°
02 = 1y(© 520 + 4300 (57 ) €0+

o 3
) ot Bo(OG -~ 00) +

o \?
+BL(€) (G~ 60) + Bol6) () (G0 +
o 0 o\ o
+ %,1(5)8 a@oﬁ' g,l(f) (31:) B 0+
) , 09
+Bo,1(f)§(G—@o)+B1,1(§>afxa(G—@o)
In general
oN" 0\
O = Z Ap, o (€) <a$> (81&) O +
1<me<k
oN" 0\
+ Z By, o(€) ((.%C) (81&) (G = 69)
0<m+0<k—1

We take Af 5 =1, BZQJ =0, Aﬁj =0 and B{fj =0 if any
of the indices k,i,j is negative. We have, in addition,
A(]j,f = 0 for any k and ¢. Furthermore, A7kn,2 = 0 if

m+€>kandBf,M:Oifm+€2k. Else, we define

AgAf;l';Q = Re"Pr(w A?rtl_l),z —(w A?;l_l)vﬁ) —

~ Al T A e-1) — NuApS) in S

k+2
S Nudjt) =0 on 05 (10)
. :
for 2<m+¥¢<k+1and k>0
AcAVIE = —Af, 5, in S (11)
AN ,
o =0on 9SS ,if m+L=k+2 (12)
3
A¢BFY? = R Pr(w B@j;il)yé —(w Bﬁgil)w -
—Bécmfz),e + Bﬁh(efl) - Nu B::,rel in .S
8Bk+2
S Nu Bif =0 on 95 (13)
. ,
for 1<m+{€<k and k>0 (14)
AﬁBS@zQ = B7kn—2,é in S
08,17 .
Ine =0on 9SS , if m+L=k+1 (15)

where we denote f =
written as

\1?|fasf dSe. Now (9) can be
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O°(x,&,t) = Op(x,t) + (16)
00 aN™ / 9\"
+ kz_zgk{ 1sz+:zgk Al (€) (895) (815) ©o +

>

0<m+¢<k—1

pa (2)(2) -0

Plugging (16) in (5) we obtain a formal ” differential equa-
tion of infinite order” for Oy in the form

00 oS
et <(w)ReOP a—0+N ||S|(@O— )) H17)
990 0 1 119260
+ 5t — (14 Re” Pr(w Ay ) 527
+Re’Pr (w B >£(G—®o)
007 9y
—&—Zsk_l[ Z (Re® Pr{wAk, 10+
k=2 2<m+<k
k 0
+NuAy ) EFCE + (18)
+ Z (Re® Pr (wBZ;,M} +
1<m+e<k—1
OmH(G - ©g)
Bt ~amgi | 7O

We can ”solve” it by expanding O in powers of ¢ as

:z:t +Zs

That way we get for each * an ordinary differential equa-
tion of first order:

Oo(z, 1) (19)

ReOPr (w >‘9a“’ + Nu 'ﬁf'( _G)=0 (20)
Re®Pr (w )aai—i—N |f;|<,0 +

+ %—(HR&M@A}@)%—
fReOPMwBé’O)aa—i) =0 (21)

In general, denoting

Ky, .= Re’ Pr{wBj,_,,)+ Nu B},
HmZ—Re0 Pr(w (A% _ W Bfnfl,f»—"_
+Nu (BE,,— BY ) .
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we get
&anrl |as|
Re"P Nu+———¢"*! 22
OPr ()T Nulgle™ + (22)
890 82<pn
+W - (1 + Reo Pr<w A%’0>)W —
D"
—Re’ P B
e’ Pr{w By o) 55— or
n  k+1 k+l1—m om n k
k+l
*2 0 ) WG S
k=0 m=1 (=0
nR omta
k+1 _
Y Kb O~
m=1 £=0
Those equations are of the type
dp* |35|
Re’Pr ~Z— + Nu =F .
(w) Re o + |S| &
It can be solved by quadratures and
(1) = ¢H(0,1) e TV T+ (23)
Nu |8S| * 71\’0“ (s—z)
_ 0 pPr F d
S|{w) Re® Pr /0 ener k(s) ds
Thus, denoting
Nu |0S] 0 1
b=-———+——— , d=Re P B
(w) Re® Pr|S| e Pr(wBoy)

c=1+ Re’ Pr (wAj,)

we obtain
@°(x,t) = ho(t) e "% — / =G (s, 1) ds
0

and for the next term

ol(x,t) = ebz{x [bho(t) (be — d) — ho(8)] +

+ /0 b {c %(s,t) ~ (be— d) G(s7t)] ds +

+/Ox/0pe"3[8£(s,t)+
+b(bc — d) G(s,t)} ds dp}

Term (w A} ) appearing in (21) and (22) is the Taylor
dispersion term.

3 Boundary layer in time

As our expansion does not satisfy the initial condition
we need to correct it in vicinity of ¢ = 0. We introduce
the fast time variable 7 = t/c? and we build the time
boundary layer corrector in the form

Z { > Cho(r )L O0(,0)

(@, 7,¢ oxr™m otk
1<m+£<k
™G — Og(z,0))
k 0 )
+ Y Dhro axmatf } (24)
0<m+0<k—1
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The auxiliary functions C* , and D , are defined by the
auxiliary mixed problems posed on Sx]0, +o00[

ack+2
R
+Re’ Pr(w C’(k:il” —(w C(kgil)ﬁ) —
~Clna)4+CF 11y — Nu Crt) in §x]0, +o0]
aok+2
ot NuCkt}l =0 on 0Sx]0,+00] (25)
8n5 ’
Cr2(0,0) + AN =0, ¢e S (26)
aDk+2
0= (97:76 — AfD:,:—; +
+Re’ Pr(w Dﬁ:il),[ —(w D?Jil),e» -
—Dfm,g),e + D,";L’(efl) — Nu Dfnf; = 0in Sx]0, 00|
aDk+2
" NuDEHY on 950, oo (27)
81’15 ’
DiF2(0,6) + BEi2(€) =0, €€ 5. (28)

The boundary layers near the ends of the pipe z = 0,1
are neglected in our analysis.

4 Conclusion

We have derived a formal asymptotic expansion for a
heat transfer in a capillary, in terms of the capillary
thickness e, assumed to be a small parameter. We
identify all terms in the expansion and reduce their
computation to a simple auxiliary problems posed on
a cross-section of the pipe. A recursive sequence of
problems is defined giving an asymptotic approximation
with arbitrary order of accuracy. Correctors for the time
boundary layer are also computed. Derived approxi-
mation is easy to compute (in fact for circular tube all
terms can be computed explicitly) and accurate, at least
outside of the boundary layers near the ends of the pipe
z=0,1.
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