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Abstract—In this paper, the homotopy-
perturbation method (HPM) is employed to obtain
approximate analytical solution to the linear and
nonlinear systems of partial differential equations
(PDEs). HPM yields solutions in convergent series
forms with easily computable terms. Generally, the
closed form of the exact solution or its expansion is
obtained without any noise terms. Test examples
demonstrate the efficiency of HPM.
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1 Introduction

It is well-known that many physical and engineering phe-
nomena such as wave propagation and shallow water
waves can be modelled by systems of PDEs [9, 19, 20].
Finding accurate and efficient methods for solving non-
linear system of PDEs has long been an active research
undertaking. Debnath [9] applied the characteristics
method and Logan [19] used the Riemann invariants
method to handle systems of PDEs. Vandewalle and
Piessens [21] implemented a method based on a combi-
nation of the waveform relaxation method and multigrid
to solve nonlinear systems. Wazwaz [22] used the Ado-
mian decomposition method (ADM) to handle the sys-
tems of PDEs and reaction-diffusion Brusselator model.
However, one notable difficulty inherent in ADM is the
calculation of the so-called Adomian polynomials which
can be cumbersome in general. Approximate solutions
of nonlinear systems of PDEs were also obtained by the
variational iteration method (VIM) [23]. Very recently,
Belal et al. [2] obtained exact solutions of the nonlinear
systems of PDEs studied in [23] directly via VIM.

In recent years, much attention has been devoted to
the study of the homotopy-perturbation method (HPM)

∗Dept. of Science in Engineering, Faculty of Engineering, Inter-
national Islamic University Malaysia, Jalan Gombak, 53100 Kuala
Lumpur, Malaysia. Email: sazzadbd@iiu.edu.my

†School of Mathematical Sciences, Universiti Ke-
bangsaan Malaysia, 43600 Bangi Selangor, Malaysia. Email:
ishak h@ukm.my

‡Dept. of Mechanical in Engineering, Faculty of Engineering,
International Islamic University Malaysia, Jalan Gombak, 53100
Kuala Lumpur, Malaysia. Email: faris@iiu.edu.my

[11, 12, 13, 14, 15, 16, 17, 18] for solving a wide range
of problems whose mathematical models yield differen-
tial equation or system of differential equations. HPM
deforms a difficult problem into a set of problems which
are easier to solve without any need to transform non-
linear terms. The applications of HPM in nonlinear
problems have been demonstrated by many researchers,
cf. [1, 3, 10]. Recently, HPM was employed for solving
singular second-order differential equations [4], nonlin-
ear population dynamics models [5] and time-dependent
Emden-Fowler type equations [6], the Klein-Gordon and
sine-Gordon equations [7]. Very recently, Chowdhury et
al. [8] were the first to successfully apply the multistage
homotopy-perturbation method (MHPM) to the chaotic
Lorenz system.

The aim of this work is to present an alternative approach
based on HPM for finding series solutions to linear and
nonlinear systems of PDEs. The efficiency and accuracy
of HPM are demonstrated through several test examples.

2 HPM for system of PDEs

To illustrate the basic idea of the HPM for system of
PDEs, we consider the following non-homogeneous, non-
linear system of PDEs

∂u1

∂t
+ g1(t, u1, u2, . . . , um) = f1(t), (1)

∂u2

∂t
+ g2(t, u1, u2, . . . , um) = f2(t), (2)

...
∂um

∂t
+ gm(t, u1, u2, . . . , um) = fm(t), (3)

subject to the initial conditions

u1(x, y, 0) = c1, u2(x, y, 0) = c2, . . . ,

um(x, y, 0) = cm, (4)

where um = um(x, y, t) and fm = fm(x, y, t).

First write system (1)–(3) in the operator form:

L(u1) + N1(u1, u2, . . . , um)− f1 = 0, (5)
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L(u2) + N2(u1, u2, . . . , um)− f2 = 0, (6)
...

L(um) + Nm(u1, u2, . . . , um)− fm = 0, (7)

subject to the initial conditions (4), where L = ∂/∂t is
linear operator and N1, N2, . . . , Nm are nonlinear opera-
tors.

According to HPM, we construct a homotopy for (5)–(7)
which satisfies the following relations:

L(u1)− L(v1) + pL(v1) + p[N1(u1, u2, . . . , um)− f1] = 0,

L(u2)− L(v2) + pL(v2) + p[N2(u1, u2, . . . , um)− f2] = 0,

...

L(um)− L(vm) + pL(vm) + p[Nm(u1,

u2, . . . , um)− fm] = 0, (8)

where p ∈ [0, 1] is an embedding parameter and
v1, v2, . . . , vm are initial approximations which satisfying
the given conditions. It is obvious that when the homo-
topy parameter p = 0, the above Equations become a
linear system of equations and when p = 1 we get the
original nonlinear system of equations. Consider the ini-
tial approximations as follows:

u1,0(x, y, t) = v1(x, y, t) = u1(x, y, 0) = c1,

u2,0(x, y, t) = v2(x, y, t) = u2(x, y, 0) = c2,

...
um,0(x, y, t) = vm(x, y, t) = um(x, y, 0) = cm,

and

u1(x, y, t) = u1,0(x, y, t) + pu1,1(x, y, t) + · · · ,

u2(x, y, t) = u2,0(x, y, t) + pu2,1(x, y, t) + · · · ,

...

um(x, y, t) = um,0(x, y, t) + pum,1(x, y, t) + · · · ,(9)

where ui,j , (i = 1, 2, . . . ,m; j = 1, 2, . . .) are functions yet
to be determined. Substituting (9) into (8) and arranging
the coefficients of the same powers of p, obtain

L(u1,1) + L(v1) + N1(u1,0, u2,0, . . . , um,0)− f1 = 0,

u1,1(x, y, 0) = 0,

L(u2,1) + L(v2) + N2(u1,0, u2,0, . . . , um,0)− f2 = 0,

u2,1(x, y, 0) = 0,

...
L(um,1) + L(vm) + Nm(u1,0, u2,0, . . . , um,0)
−fm = 0, um,1(x, y, 0) = 0,

L(u1,2) + N1(u1,1, u2,1, . . . , um,1) = 0,

u1,2(x, y, 0) = 0,

L(u2,2) + N2(u1,1, u2,1, . . . , um,1) = 0,

u2,2(x, y, 0) = 0,

...
L(um,2) + Nm(u1,1, u2,1, . . . , um,1) = 0,

um,2(x, y, 0) = 0,

etc.

Now solve the above systems of equations for the un-
knowns ui,j (i = 1, 2, . . . ,m; j = 1, 2, . . .). Therefore,
according to HPM the n-term approximations for the so-
lutions of (5)–(7) can be expressed as

φ1,n(x, y, t) = u1(x, y, t)

= lim
p→1

u1(x, y, t) =
n−1∑

k=0

u1,k(x, y, t),

φ2,n(x, y, t) = u2(x, y, t)

= lim
p→1

u2(x, y, t) =
n−1∑

k=0

u2,k(x, y, t),

...
φm,n(x, y, t) = um(x, y, t)

= lim
p→1

um(x, y, t) =
n−1∑

k=0

um,k(x, y, t).

3 Applications of HPM

In this section, we shall demonstrate the efficiency and
accuracy of HPM to systems of linear and nonlinear PDEs
through two examples. The HPM algorithm is coded in
the computer algebra package Maple.

3.1 Example 1

The second system we shall study is the nonhomogeneous
linear system of PDEs,

ut − vx − u + v = −2,

vt + ux − u + v = −2, (10)

subject to the initial conditions

u(x, 0) = 1 + ex, v(x, 0) = −1 + ex. (11)

According to the HPM, we can construct a homotopy of
system (10) which satisfies the following relation:

ut − (y0)t + p [(y0)t − vx − u + v + 2] = 0,

vt − (z0)t + p [(z0)t + ux − u + v + 2] = 0. (12)
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Let us choose the initial approximations as

u0(x, t) = y0(x, t) = u(x, 0) = 1 + ex,

v0(x, t) = z0(x, t) = v(x, 0) = −1 + ex.

and

u(x, t) = u0(x, t) + pu1(x, t) + p2u2(x, t) + · · · ,
v(x, t) = v0(x, t) + pv1(x, t) + p2v2(x, t) + · · · ,(13)

Substituting (13) into (12) and equating terms of the
same powers of p, we have

(u1)t + (y0)t − (v0)x − u0 + v0 + 2 = 0, u1(x, 0) = 0,

(v1)t + (z0)t + (u0)x − u0 + v0 + 2 = 0, v1(x, 0) = 0,

(u2)t − (v1)x − u1 + v1 = 0, u2(x, 0) = 0,

(v2)t + (u1)x − u1 + v1 = 0, v2(x, 0) = 0,

(u3)t − (v2)x − u2 + v2 = 0, u3(x, 0) = 0,

(v3)t + (u2)x − u2 + v2 = 0, v3(x, 0) = 0,

(u4)t − (v3)x − u3 + v3 = 0, u4(x, 0) = 0,

(v4)t + (u3)x − u3 + v3 = 0, v4(x, 0) = 0,

(u5)t − (v4)x − u4 + v4 = 0, u5(x, 0) = 0,

(v5)t + (u4)x − u4 + v4 = 0, v5(x, 0) = 0,

etc. Solving the above differential equations we obtain,

u1(x, t) = ext, v1(x, t) = −ext,

u2(x, t) =
1
2
ext2, v2(x, t) =

1
2
ext2,

u3(x, t) =
1
6
ext3, v3(x, t) = −1

6
ext3,

u4(x, t) =
1
24

ext4, v4(x, t) =
1
24

ext4,

u5(x, t) =
1

120
ext5, v5(x, t) = − 1

120
ext5,

etc.

Hence, the series solutions are

u(x, t) = 1 + ex

(
1 +

t2

2!
+

t3

3!
+ · · ·

)
,

v(x, t) = 1 + ex

(
1− t +

t2

2!
− t3

3!
+ · · ·

)
,

which again converge to the closed-form solutions,

u(x, t) = 1 + ex+t, v(x, t) = −1 + ex−t.

3.2 Example 2

Now we shall study the following nonhomogeneous non-
linear system of PDEs,

ut + vux + u = 1,

vt − uvx − v = 1, (14)

subject to the initial conditions

u(x, 0) = ex, v(x, 0) = e−x. (15)

According to the HPM, we can construct a homotopy of
system (14) which satisfies the following relation:

ut − (y0)t + p [(y0)t + vux + u− 1] = 0,

vt − (z0)t + p [(z0)t − uvx − v − 1] = 0. (16)

Let us choose the initial approximations as

u0(x, t) = y0(x, t) = u(x, 0) = ex,

v0(x, t) = z0(x, t) = v(x, 0) = e−x. (17)

Substituting (13) and (17) into (16) and equating terms
of the same powers of p, obtain

(u1)t + (y0)t + v0(u0)x + u0 − 1 = 0, u1(x, 0) = 0,

(v1)t + (z0)t − u0(v0)x − v0 − 1 = 0, v1(x, 0) = 0,

(u2)t + (u0)xv1 + (u1)xv0 + u1 = 0, u2(x, 0) = 0,

(v2)t − (v0)xu1 − (v1)xu0 − v1 = 0, v2(x, 0) = 0,

(u3)t + (u0)xv2 + (u1)xv1 + (u2)xv0 + u2 = 0,

u3(x, 0) = 0,

(v3)t − (v0)xu2 − (v1)xu1 − (v2)xu0 − v2 = 0,

v3(x, 0) = 0,

(u4)t + (u0)xv3 + (u2)xv1 + (u1)xv2 + (u3)xv0

+u3 = 0, u4(x, 0) = 0,

(v4)t − (v0)xu3 − (v2)xu1 − (v1)xu2 − (v3)xu0

−v3 = 0, v4(x, 0) = 0,

(u5)t + (u2)xv2 + (u3)xv1 + (u0)xv4 + (u1)xv3

+(u4)xv0 + u4 = 0, u5(x, 0) = 0,

(v5)t − (v2)xu2 − (v3)xu1 − (v0)xu4 − (v1)xu3

−(v4)xu0 − v4 = 0, v5(x, 0) = 0,

etc. Solving the above differential equations we obtain,

u1(x, t) = −ext, v1(x, t) = e−xt,

u2(x, t) =
1
2
ext2, v2(x, t) =

1
2
e−xt2,

u3(x, t) = −1
6
ext3, v3(x, t) =

1
6
e−xt3,

u4(x, t) =
1
24

ext4, v4(x, t) =
1
24

e−xt4,

u5(x, t) = − 1
120

ext5, v5(x, t) =
1

120
e−xt5,

etc.

Hence, the series solutions are

u(x, t) = ex

(
1− t +

t2

2!
− t3

3!
+ · · ·

)
,

v(x, t) = e−x

(
1 + t +

t2

2!
+

t3

3!
+ · · ·

)
,

which converge to the closed-form solutions,

u(x, t) = ex−t, v(x, t) = e−x+t.
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4 Conclusion

The homotopy-perturbation method (HPM) was em-
ployed successfully for solving linear and nonlinear sys-
tem of partial differential equations. HPM avoids the dif-
ficulties arising in finding the Adomian polynomials and
transformation formulas. In addition, the calculations in-
volved in HPM are very simple and straightforward. It is
demonstrated that HPM is a promising tool for systems
of PDEs.
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