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Fixed Points Results via Iterates of Four Maps in
TVS-valued Cone Metric Spaces

Muhammad Arshad and Akbar Azam

Abstract—: We obtain common fixed points of four
mappings satisfying a contractive type condition by
demonstrating the convergence of their sequence of iterates in
TVS valued cone metric spaces. Our results generalize some
well-known recent results in the literature.

Index Terms— contractive type mapping; non-normal
cones; fixed point ; cone metric space.

I. INTRODUCTION AND PRELIMINARIES

Fixed point theorems are very important tools for providing
evidence of the existence and uniqueness of solutions to
various mathematical models (i.e., differential, integral and
partial differential equations) representing phenomena
happening in different fields, such as steady state
temperature distribution, chemical equations, economic
theories, financial analysis and biomedical research. The
literature of the last four decades flourishes with results
which discover fixed points of self and nonself nonlinear
operators in a metric space. For most of them, their
reference result is the Banach contraction theorem, which
states that if X is a complete metric space and T a

single valued contractive self mapping on X, then T

has a unique fixed pointin X. This theorem looks simple
but plays a fundamental role in fixed point theory and has
become even more important because being based on
iteration, it can be easily implemented on a computer.
Common fixed point theorems deals with the guarantee that

a family {Ti = Q} of self mappingsonaset X has
one or more common fixed points, i.e., the system
X=T,x (i € Q) of functional equations has one or more

simultaneous solutions. Recently Beg, Azam and Arshad
[4], studied common fixed points of a pair of maps on
topological vector space(TVS) valued cone metric spaces
which is bigger than that of introduced by Huang and
Zhang [5]. In this paper we obtain common fixed points of a
pair of mappings satisfying Banach contractive condition
without the assumption of normality in TVS-valued cone
metric spaces. Our results improve and generalize some
significant recent results(e.g., see [1,5,8,10] ).
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Let (E,7) be always a topological vector space (TVS)

and P asubsetof E .Then, P iscalledacone
whenever

(i) P isclosed, non-empty and P = {0},
(i) ax+by eP forall X,y e P andnon-negative
real numbers a,b,

(i) P~ (=P) ={0}.

Foragivencone P < E, we can define a partial

ordering < with respectto P by X <Y ifand only if
y—XxeP. x<y willstandfor X<y and X#Y,
while X <<y will stand for y—X e intP, where
int P denotes the interior of P.

Definition 1: Let X be a non-empty set. Suppose the
mapping d : X x X — E satisfies

(d1) 0<d(x,y) forall x,yeX and
d(x,y)=0 ifandonlyif x =y,
(d,)d(x,y)=d(y,x) forall x,ye X,
(d3) d(x,y)<d(x,z)+d(z,y) forall
X,y,Z2e X.

Then d iscalled a TVS-valued cone metricon X and
(X,d) iscalled a TVS-valued cone metric space.

If E isareal Banach space then (X,d) is called cone
metric space [3].

Definition 2: Let (X,d) be a TVS-valued cone metric
space, X € X and {X,}., asequencein X. Then

() {x,}., convergesto X whenever for every
ceE with 0<<cC thereisanatural number N

such that d(x,,X) <<c forall n>N.

We denote thisby lim_ X, =X or X, = X

(i) {x },., isaCauchy sequence whenever for every
ceE with 0<<cC thereisanatural number N

such that d(X,,X,,) <<C forall n,m> N.

(ii) (X,d) isa complete cone metric space if every
Cauchy sequence is convergent.
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A pair (f ,T) of self-mappings on a TVS-valued cone
metric space X is said to be compatible if, for any
sequence X, € X with fX, —t,Tx, — t, and for
arbitrary C e int P, there exists a natural number Ny

such that

d(fTx,;Tfx,) <<c; forall n>n,.

The pair (f,T) is said to be weakly compatible if they
commute at their coincidence point (i.e., fTx = Tfx
whenever fX =TX ). Aself-mapping T ona

TVS-valued cone metric X is called continuous at a
point X, € X if, forevery sequence X, € X,

X, = X, implies TX, — TX,

Il. MAIN RESULTS

Theorem 3: Let (X, d) be acomplete TVS-valued cone
metric space and the mappings S,T,f,g : X —> X
satisfy:

d(Sx, Ty) < A d(fx,gy)

forall X,ye X where 0<A<1.If

SX  gX, TX < fX,

f is continuous, (S, f) iscompatible and (T,g )
is weakly compatible, then S,T, f and g havea
unique common fixed point.

Proof: Let X, beanarbitrary pointin X, Choose a
point X in X suchthat Yy, = gX, = SX,. Thiscan
be done since SX < gX. Similarly, choose a point X,

in X suchthat y, = fX, =Tx,. Continuing this

process and having chosen X, in X. We obtain Xn+1
in X such that

Yoksr = OXoke1 = SXok

Yoke2 = fXoko = TXoki1,k =0,1,2,....

Then,

d(OX 2ke1, PX2k42) = d(SX 2k, TX 2k41)
< Ad(fX 2k, OX 2k+1)-
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Similarly,

d (X001 OXopis) = A(SXp00, TXp 1)
S /1( fx2k+2 ' gx2k+l)
< 2%d( X0 OXpi01)-

Now by induction, we obtain for each k =0,1,2,...,

d(fX2ks2, OX2ks3) < A2K2d(fXo,9X1).

Forall n, we have

d(Yn+1,Yns2) < Ad(Yn,Yne1)
<...< A™d(yo, y1).

It follows that for m > n,

d(ym' yn) < d(yn'yn+l) +d(yn+1’ yn+2) +..
+d(ym—l7ym)
< [/1” + A +...+l'”’1]d(y0, y,)

ﬂ’ﬂ
< L_Jd(ym ).

Let 0 << C be given, choose a symmetric neighborhood
V of 0 suchthat c+V < intP Also, choose a natural

number N1 such that [%]d(yo,yl)ev, for all

n>N,. Then, Z-d(y,;,Y,)<<C, forall n>N,.
Thus,

n

A
d(Yp, Yy) <
(Yo Yn) L—ﬂ

}d(YOv y,) <<¢,

forall m>n. Therefore, {y,},.; isa Cauchy

sequence. Since X is complete, there exists z € X
suchthat Yy, — Z. For its subsequence we obtain,

0oy > Z, Xy = 2,5%,, > zand TX,, ,, — Z.
Since f is continuous therefore

fgx,,., — fz, ffx,, ., — fz, fSx,, —» fz and
Xy, — f2.

As fSx,, — fz and (S, f) is compatible, for
arbitrary C € int P, there exists a natural numbers n,
and N, such that

d(Sfx,, . foZk)<<% forall k >n,

and
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d(fSx,,, fz)<<% forall k >n,.

It implies that
(SfXy, 12) < (SfXy , TSX,, )+ (15X, , f2)

<< %+%= ¢ forall k > max{n,,n, },

thatis Sfx,, — fz. Choose natural numbers
N,,N,,N,, and N, such that

d(fz,Sfx2k)<<% forall k > N,

—)c
4

—A)c
4

=

d( ffx,, , fz) << forall k > N,,

[N

d(z, 9%y, ) << forall k > N,

and

d(TXy,y,2) << (1_4/1)(: forall k> N,.

For k >max{N,,N,,N;,N,} , by performing a
simple calculation we can have

d(fz,z)<<%,forall m>1.

So, ﬁ—d(fz,z)e P, forall m>1. Since

€ >0(as m—>o) and P isclosed,
—d(gu,Su) e P. But d(fz,z)e P. Therefore,
d(fz, Z)= O .Hence fz=1z. Toassert Sz =z,

choose natural numbers N,, N, such that

c
d(z, 9X,,, )<< — forall k > N
( gzkl) 22’ 5
and

d(Tx2k+1,z)<<% forall k > N,.

Now , for k >max{N;,N;} wehave

d(8z,z) < d(Sz, TXak41) + d(TX2k41,2)
< Ad(fz, X241 ) + d(TX 2k41,2)
< Ad(Z, 9X 241 ) + d(TX 2k41,2)

<))& ,C_
_/121+2 C.

By a similar argument (as in the proof of fz =7 ), we
have Sz =z. Now we shall show Tz =gz. As
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SX < gX, thereexists Ue€ X such that
Z =Sz = gu. Since,

d(Tu,gu) < d(Tu,Sz)< Ad(gu, fz)
<d(z,2)=0,

therefore Zz =Tu = gu and weakly compatibility of

T and g implies that

gz =gTu = Tgu = Tz.

Tosee Tz =12, -consider,

d(Tz,z) = d(Tz,Sz) < Ad(gz,fz) = Ad(Tz,2).

Ityields Tz =z, which further implies gz = z. Hence,

1=09z=fz=S2="Tz

Example 4: Let X =[0,1] and E be the set of all

real valued functions on X which also have continuous
derivativeson X. Then E isavector space over R
under the following operations:

X+y)(t) = x() +y), (@x)(t) = ax(t),
forall X,y € E,ax € R. Let 7 be the strongest

vector (locally convex) topology on E. Then (E,T) isa

topological vector space which is not normable and is not
even metrizable. Define d : X x X — E as follows:

@, y)() =[x —yle",

P={(xeE : x(t)>0forallte X}.

Then (X . d) is a TVS-valued cone metric space. Let
S,T,f,g : X > X besuch that

- ,TX = X ,fx=5andgx:1.
Xx+10 X+16 5 8

For X,y € X, we have

SX
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X Y o
X+10 y+16

X(y+16) —y(x + 10)

t

t

(x+10)(y+16)
- | 16x = 10y ot
- 160
1|lx _Yat
S2‘5 s‘e’

that is

d(Sx, Ty)(t) < %d (fx,gy)(t) forallte X.

It suffices to assume A = %, in order to satisfy all
assumptions of the above theorem.

If in Theorem 3, we choose S =T and f =g, we
obtain the following corollary.

Corollary 5: Let (X,d) beacomplete TVS-valued

cone metric space and the mappings T f : X — X

satisfy:
d(Tx, Ty) < A d(fx,fy)

forall X,y e X where 0<A<1. If

X < fX,

f iscontinuous, (T, f) iscompatible then T and
f have a unique common fixed point.

In the following result continuity of f

whereas completeness of X s replaced with the
completeness of TX or fX.

is not required

Theorem 6: Let (X,d) bea TVS-valued cone metric

space and the mappings T f : X — X satisfy:

d(Tx, Ty) < A d(fx,fy)

forall Xx,ye X where 0<A<1. If

X c X,

TX or fX iscomplete, (T,f) is compatible then

T and f have a unique common fixed point.
Proof: As in the proof of Theorem 3, construct a Cauchy
in X

sequence { X}, such that
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Yokr1 = ok = TXopk
Yoz = o2 = TXoiea,k = 0,1,2,....

By completeness of X, thereexists u,v € X such
that y, — V= fu (this holdsalso if TX iscomplete
withv € TX ). Choose a natural number N such that

d(y,,v) <<% forall n> N.

Hence, forall n> N
d(fU,TU) < d(fu1 y2n+2) + d(y2n+2'Tu)

< d (V’ y2n+2) + d (TX2n+l’Tu)
< d (Vv y2n+2) + ﬂ'd ( fX2n+l’ fU)

< d (Vv y2n+2) + d (y2n+l ! V)

C ¢
<<—+—-=C
2 2

Thus,

d(fu,Tu) <<= forall m>1.
m

So, £ —d(fu,Tu) e P, forall m>1. Since

'm
€ 50(asm-—>) and P isclosed,

—d(fu,Su) e P, but P m(— P)z{O}. Therefore,
d(fu,Tu) =0 . Hence

v = fu = Tu.
By weakly compatibility of (T, f ), we have

Tv = Tfu = fTu = fv.

Then

d(Tv,v) = d(Tv,Tu) < Ad(fv,fu) = Ad(Tv,Vv).

Thus V isaunique common fixed pointof T and f.

Corollary 7: Let (X,d) beaTVS-valued cone metric
space and the mappings T f : X — X satisfy:

TX < fX and d(T"x,T"y) <Ad(fx, fy)

forall X,ye X where 0<A <1 Then T and f
have a unique common fixed point, if Tf = fT and one

of the following conditions is satisfied:

e X is complete and f iscontinuous
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e fX is complete

e TX is complete.

Proof : By Corollary 5 and Theorem 6, we obtain
Ve X such that

fv=T" =v.

The result then follows from the fact that
d(Tv,v)=d(TT"v,T"V) =d(T"Tv,T"v)
< Ad(fTv, fv) = Ad (Tfv, fv)
= Ad(Tv,v).

Example 8: Let X =C([1,3],R), (E,r) is the

topological vector space of Example 4. Define
d : X xX — E asfollows:

d(x,y)(t) = ( sup |><(S)—y(5)l>et

se[1,3]

P={(x<E : x(t)?0forallte X}.
Then (X . d) is a TVS-valued cone metric space. Define
T:X—>X by

T(x(s))=4+ j'(x(u)+ u?Je**du,

£ (x(s) = ().
For X,ye X

d(Tx, Ty)(t) = ( sup[Tx(s)- Ty(s]j e'

seft,3]

<[ ol vt e

" se3
= 2ed(x, y)e".
Similarly,
AT, TY)(e!) < €222 d(x,y)(e).
Note that
2 53

=——if n=38.
n' 100
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Thusfor A =32, N=38, all conditions of Corollary 7

are satisfied and so T has a unique fixed point, which is
the unique solution of the integral equation:

X(s)=4+ Js'(x(u)+ u? e du

1

or the differential equation:

x'(s) = (x+s?)est, se[1,3], x(1) =4

REFERENCES

[1] M. Abbas and G. Jungck, Common fixed point results for non
commuting mappings without continuity in cone metric spaces, J.
Math. Anal. Appl., 341(2008), 416-420.

[2] M. Arshad, A. Azam and P. Vetro, Some common
fixed point results in cone metric spaces, Fixed Point
Theory Appl. 2009 (2009), 11 pages., Article ID
493965.

[3] A.Azam, M. Arshad and I. Beg, Common fixed points
of two maps in cone metric spaces, Rend. Circ. Mat.
Palermo, 57 (2008) 433--441.

[4] 1. Beg, A. Azam and M. Arshad, Common fixed points
for maps on topological vector space valued cone
metric spaces, Internat. J. Math. and Math. Sciences,
2009(2009) 8 pages, Article ID 560264.

[5] L.-G. Huang and X. Zhang, Cone metric spaces and
fixed point theorems of contractive mappings, J. Math.
Anal. Appl. 332 (2007) 1468--1476.

[6] D.Klim, D. Wardowski, Dynamic processes and fixed
points of set-valued nonlinear contractions in cone
metric spaces, Nonlinear Analysis, 71 (2009)
5170-5175.

[7] D. llic and V. Rakocevic, Common fixed points for
maps on cone metric space, J. Math. Anal. Appl.,
341(2008), 876--882.

[8] S. Rezapour and R. Hamlbarani, Some notes on paper
"Cone metric spaces and fixed point theorems of
contractive mappings.”, J. Math. Anal. Appl., 345
(2008) 719--724.

[9] S. Radenovic and B.E. Rhoades, Fixed point theorem
for two non-self mappings in cone metric spaces,
Comp. Math. Appl.,57 (2009) 1701--1707.

[10] Du Wei-Shih: A note on cone metric fxed point theory
and its equivalence, Nonlinear Analysis, 72 (2010)
2259-2261.

WCE 2010



	I. INTRODUCTION AND PRELIMINARIES 
	II. main results 



