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Abstract— It has been shown recently that a non-
singular tridiagonal linear system of the form Tx = b
can be solved in a backward-stable manner using the
LBMT decomposition, i.e., T = LBMT, where L and
M are unit lower triangular matrices and B is block
diagonal with 1 × 1 and 2 × 2 blocks. In this pa-
per, we demonstrate the robustness of two algorithms
that compute a backward-stable LBMT decomposi-
tion using a wide range of well-conditioned and ill-
conditioned linear systems. Numerical results suggest
that these algorithms are comparable to Gaussian
elimination with partial pivoting (GEPP). However,
unlike GEPP, these algorithms do not require row
interchanges, and thus, may be used in applications
where row interchanges are not possible. In addition,
substantial computational savings can be achieved by
carefully managing the nonzero elements of the fac-
tors L, B, and M .
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1 Introduction

A nonsingular tridiagonal linear system of the form

Tx = b, (1)

where T ∈ IRn×n and x and b ∈ IRn, is often solved us-
ing matrix factorizations. If T is symmetric and positive
definite, then the Cholesky decomposition or the LDLT

factorization, where L is a lower triangular matrix and
D is a diagonal matrix, can be used to solve (1). If T is
symmetric but indefinite, then with row and/or column
permutations, the LBLT factorization can be used, where
B is block diagonal with either 1 × 1 or 2 × 2 blocks
(see e.g., [2, 3, 4, 5, 6, 9]). Finally, if T is unsymmet-
ric, then (1) can be solved using Gaussian elimination
with full pivoting or with partial pivoting (GEPP). Re-
cent work by the authors [8] shows that (1) can be solved
in a backward-stable manner using the LBMT decompo-
sition of T , i.e., T = LBMT, where B is a block diagonal
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matrix with either 1×1 or 2×2 blocks and L and M are
unit-lower tridiagonal matrices.

In this paper, we examine two algorithms presented in
[8] for forming a backward-stable LBMT decomposition
of a nonsingular tridiagonal matrix T . We demonstrate
that the resulting L, B, and M factors from either al-
gorithm can be used to solve the linear system Tx = b
with accuracy comparable to Gaussian eliminiation with
partial pivoting (GEPP). However, unlike GEPP, nei-
ther algorithm requires row interchanges, making them
particularly useful in look-ahead Lanczos methods [11]
and composite-step bi-conjugate gradient methods [1] for
solving unsymmetric linear systems.

2 Diagonal pivoting

Let T ∈ IRn×n denote the unsymmetric nonsingular tridi-
agonal matrix

T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

α1 γ2 0 · · · 0

β2 α2 γ3
. . .

...

0 β3 α3
. . . 0

...
. . . . . . . . . γn

0 · · · 0 βn αn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (2)

We partition T in the following manner:

T =

d n−d

d

n−d

[
B1 TT

12

T21 T22

]

The computation of the LBMT factorization, where L and
M are unit lower triangular and B is block diagonal with
1 × 1 and 2 × 2 blocks, involves choosing the dimension
(d = 1 or 2) of the pivot B1 at each stage:

T =
[

Id 0
T21B

−1
1 In−d

] [
B1 0
0 Sd

] [
Id B−1

1 TT
12

0 In−d

]
, (3)

where Sd = T22 − T21B
−1
1 TT

12 ∈ IR(n−d)×(n−d). It can
be shown that an invertible B1 exists for some d and
that the Schur complement Sd is tridiagonal so that the
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factorization can be defined recursively. Specifically, for
d = 1,

S1 = T22 − β2γ2

α1
e
(n−1)
1 e

(n−1)T
1 ,

where e
(n−1)
1 is the first column of the (n − 1) × (n − 1)

identity matrix. For d = 2,

S2 = T22 −
(

α1β3γ3

Δ

)
e
(n−2)
1 e

(n−2)T
1 .

where
Δ = α1α2 − β2γ2

is the determinant of the 2 × 2 pivot B1 and e
(n−2)
1 is

the first column of the (n − 2) × (n − 2) identity matrix.
In both cases Sd and T22 differ only in the (1, 1) entry;
thus, the LBMT factorization can be recursively defined
to obtain the matrices L, B, and M .

The algorithms in [8] can be completely described by
looking at the first stage of the factorization.

2.1 Algorithm I

Let
L1 = T21B

−1
1 and MT

1 = B−1
1 TT

12

in (3). If a 1× 1 pivot is used, then the (1, 1) elements of
L1 and M1 are

(L1)1,1 =
β2

α1
and (M1)1,1 =

γ2

α1
. (4)

If a 2×2 pivot is used, then the (1, 1) and (1, 2) elements
of L1 and M1 are

(L1)1,1 = −β2β3

Δ
, (M1)1,1 = −γ2γ3

Δ
,

(L1)1,2 =
α1β3

Δ
, (M1)1,2 =

α1γ3

Δ
.

(5)

With elements of L1 and M1 for a 2 × 2 pivot scaled by
the constant κ (described below) from the Bunch pivoting
strategy [2], Algorithm I chooses a 1×1 pivot if the both
of the entries in (4) is smaller than the largest entry in
(5) in magnitude, i.e.,

max
{ |β2|
|α1| ,

|γ2|
|α1|

}

≤ max κ

{ |β2β3|
|Δ| ,

|α1β3|
|Δ| ,

|γ2γ3|
|Δ| ,

|α1γ3|
|Δ|

}
,

(6)

and a 2 × 2 pivot is chosen otherwise. In other words,
Algorithm I chooses pivot sizes based on whichever leads
to smaller entries (in magintude) in the computed factors
L and M . In addition, we impose the criterion that if

|α1α2| ≥ κ|β2γ2|, (7)

a 1× 1 pivot is chosen. This additional criterion guaran-
tees that if T is positive definite, the LBMT factorization

reduces to the LDMT factorization. The choice of pivot
size in the first iteration is described as follows:

Algorithm I. This algorithm determines the size of the
pivot for the first stage of the LBMT factorization applied
to a tridiagonal matrix T ∈ IRn×n.

κ = (
√

5 − 1)/2 ≈ 0.62
Δ = α1α2 − β2γ2

if |α1α2| ≥ κ|β2γ2| or |Δ|max {|β2|, |γ2|} ≤
κ|α1|max {|β2β3|, |α1β3|, |γ2γ3|, |α1, γ3|}

dI = 1
else

dI = 2
end

The choice of κ, which is a root of the equation κ2+κ−1 =
0, balances the element growth in the Schur complement
for both pivot sizes by equating the maximal element
growth (see [2] for details). A recursive application of
Algorithm I yields a factorization T = LBMT , where L
and M are unit lower triangular and B is block diagonal.
(In fact, one can show that L and M are such that Li,j =
Mi,j = 0 for i − j > 2.) Intuitively, Algorithm I chooses
a 1 × 1 pivot if α1 is sufficiently large relative to the
determinant of the 2×2 pivot, i.e., a 1×1 pivot is chosen
if a 2 × 2 pivot is relatively closer to being singular than
α1 is to zero.

2.2 Algorithm II

We also proposed an alternative pivoting strategy that is
based on the strategy of Bunch and Kaufman for sym-
metric tridiagonal matrices (Section 4.2, [3]). (Note that
this strategy is different from their well-known symmetric
factorization using partial pivoting.) This second strat-
egy chooses a 1 × 1 pivot if the (1, 1) diagonal entry is
sufficiently large relative to the off-diagonals, i.e.,

|α1|σ1 ≥ κ|β2γ2|,

where
σ1 = max{|α2|, |γ2|, |β2|, |γ3|, |β3|},

and κ is as in Sec. 2.1. This algorithm can be completely
described in the first step:

Algorithm II. This alternative algorithm determines
the size of the pivot for the first stage of the LBMT fac-
torization applied to a tridiagonal matrix T ∈ IRn×n.

κ = (
√

5 − 1)/2 ≈ 0.62
σ1 = max{|α2|, |γ2|, |β2|, |γ3|, |β3|}
if |α1|σ1 ≥ κ|β2γ2|,

dII = 1
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else
dII = 2

end

It can be shown that Algorithms I and II are very related
in that whenever Algorithm I chooses a 1×1 pivot, so does
Algorithm II. In fact, the only difference between the two
algorithms is that on occasion, Algorithm I may choose
a 2× 2 pivot while Algorithm II chooses two consecutive
1 × 1 pivots.

2.3 Backward stability result

These two pivoting strategies imply a backward stabil-
ity result which demonstrates that (a) the difference be-
tween computed factorization L̂B̂M̂T and the original
tridiagonal matrix T is small (i.e., it is of order machine
precision), and (b) the computed solution x̂ is the exact
solution to a nearby problem. More formally, we state
the following theorem:

Theorem 1. Assume the LBMT factorization of the un-
symmetric tridiagonal matrix T ∈ IRn×n obtained using
the pivoting strategy of Algorithm I or II yields the com-
puted factorization T ≈ L̂B̂M̂T , and let x̂ be the com-
puted solution to Tx = b obtained using the factorization.
Assume that all linear systems Ey = f involving 2 × 2
pivots E are solved using the explicit inverse. Then

T − L̂B̂M̂T = ΔT1, and (T + ΔT2)x̂ = b,

where

‖ΔTi‖max ≤ cu‖T‖max + O(u2), i = 1, 2,

where c is a constant and u is the machine precision.

Proof. See [8].

Pictorially, the backward stability result of Theorem 1 is
represented in Fig. 1.

In addition to computing a backward-stable LBMT de-
composition of T , these algorithms have minimal storage
requirements. Specifically, T is tridiagonal, and thus, can
stored using three vectors. Moreover, updating the Schur
complement requires updating only one nonzero compo-
nent of T . The matrices L and M are unit-lower trian-
gular with Li,j = Mi,j = 0 for i − j > 2; thus, their
entries can be stored in two vectors each. Finally, B is
block-diagonal with 1 × 1 or 2 × 2 blocks, requiring only
three vectors for storage.

3 Numerical experiments

Numerical tests were run using Matlab implementations
of Algorithm I, Algorithm II, GEPP, and the Matlab

backslash command (“\”). (Specifically, Algorithm I and
Algorithm II were embedded in a code that used one for-
ward substitution to solve with L, one back substitution

Figure 1: Theorem 1 implies not only that the product of the
computed factors bL bB cMT is very close to the original matrix
T , but that the computed solution x̂ is the exact solution to a
nearby problem, i.e., the components of ΔT2 are very small.

to solve with MT , and a solve with the block-diagonal
factor B). We compared the performance of each code
on 16 types of nonsingular tridiagonal linear systems of
the form Tx = b. The test set of system matrices contains
a wide range of difficulty. Many ill-conditioned matrices
were chosen as part of the test set in order to compare
algorithm robustness. (Ill-conditioned matrices are of-
ten challenging for matrix-factorization algorithms.) The
test set of system matrices was taken from recent liter-
ature (specifically, [7] and [10]) on estimating condition
numbers of ill-conditioned matrices–a task that can be-
come increasingly difficult the more ill-conditioned the
matrix is.

Table 1 contains a description of each tridiagonal ma-
trix type in the test set. The first ten matrix types listed
are based on test cases in [10]. Types 11-14 correspond to
test cases found in [7] not found in [10], i.e., we eliminated
redundant types. Finally, we include two additional tridi-
agonal matrices (Types 15-16) that can be generated us-
ing the Matlab command gallery. For our tests, T
was chosen to be a 100 × 100 matrix. The elements of b
were chosen from a uniform distribution on [−1, 1].

One system matrix was generated from each matrix type,
and together with a vector b, the same linear system of
the form Tx = b was solved by each algorithm. Table 2
shows the relative errors associated with each method.
Columns 2-5 of the table contain the relative error

‖T x̂ − b‖2

‖b‖2
,

where x̂ is the computed solution by each solver. The
final column gives the condition number of the system
matrix T . Each row in the table corresponds to one lin-
ear system from one type; that is, row i contains the rela-
tive errors associated with each solver on a linear system
whose system matrix was from type i in Table 1.
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Table 2 suggests that all four algorithms are comparable
on a wide variety of linear systems. When the system
matrix is well-conditioned (e.g., Types 1, 4, 6, 8, 10, 13,
14, 16), the algorithms have relative errors that are close
to machine precision and that are comparable to one an-
other. On the other hand, more significant differences
occur when the system matrix is very ill-conditioned.
For Type 5, the Algorithms I and II perform particu-
larly poorly, and the solutions are offered by GEPP and
the Matlab backslash command are also very poor, with
an error near 1016. In fact, due to the ill-conditioning of
the system matrix, all methods failed to solve the linear
system. Finally, for Types 2, 3, 7, 9, 11, 12, and 15, the
system matrices are ill-conditioned, however all the meth-
ods obtain relative errors within an order of magnitude
of each other.

4 Conclusions and future work

Algorithms I and II, proposed in [8], were shown to com-
pute a backward-stable LBMT decomposition of any non-
singular tridiagonal matrix. Numerical results on a wide
range of linear systems suggest that the performance of
Algorithms I and II are comparable to GEPP and the
Matlab backslash command.

Future work will focus on embedding Algorithm I and
II into methods such as the look-ahead Lanczos meth-
ods and composite-step bi-conjugate gradient methods
for solving unsymmetric linear systems.
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Table 1: Tridiagonal matrix types used in the numerical experiments

Matrix
type Description

1 Randomly generated matrix from a uniform distribution on [−1, 1].

2 gallery(‘randsvd’,n,1e15,2,1,1) – Randomly generated matrix with condition number
1e15 and one small singular value.

3 gallery(‘randsvd’,n,1e15,3,1,1) – Randomly generated matrix with condition number
1e15 and geometrically distributed singular values.

4 Toeplitz matrix T with Tii = 108 for i = 1 . . . n, and the elements Tij for i �= j are randomly
generated from a uniform distribution on [−1, 1].

5 Toeplitz matrix T with Tii = 10−8 for i = 1 . . . n, and the elements Tij for i �= j are randomly
generated from a uniform distribution on [−1, 1].

6 gallery(‘lesp’,n) – Matrix with sensitive eigenvalues that are smoothly distributed in the
approximate interval [−2n − 3.5,−4.5].

7 gallery(‘dorr’,n,1e-4) – Ill-conditioned, diagonally dominant matrix.

8 Randomly generated matrix from a uniform distribution on [−1, 1]; the 50th subdiagonal
element is then multiplied by 10−50.

9 Matrix whose elements are all generated from a uniform normal distribution on [−1, 1]; the
lower diagonal are then multiplied by 10−50.

10
Main diagonal elements generated randomly from a uniform distribution on [−1, 1];
off-diagonal elements each chosen with 50% probability as either zero or generated randomly
from a uniform distribution on [−1, 1].

11 gallery(‘randsvd’,n,1e15,1,1,1) – Randomly generated matrix with condition number
1e15 and one large singular value.

12 gallery(‘randsvd’,n,1e15,4,1,1) – Randomly generated matrix with condition number
1e15 and arithmetically distributed singular values.

13 Toeplitz matrix T with Tii = 64 for i = 1 . . . n, and the elements Tij for i �= j are randomly
generated from a uniform distribution on [−1, 1].

14 Toeplitz matrix T with Tii = 0 for i = 1 . . . n, and the elements of Tij for i �= j are randomly
generated from a uniform distribution on [−1, 1].

15 gallery(‘clement’,n,0) – Main diagonal elements are zero; eigenvalues include plus and
minus the numbers n − 1, n − 3, n − 5, . . . 1.

16 inv(gallery(‘kms’,n,0.5)) – Inverse of a Kac-Murdock-Szego Toeplitz (Aij = (0.5)|i−j|).
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Table 2: Relative errors for four methods for solving the tridiagonal system Tx = b.

Matrix
Type

Algorithm I Algorithm II GEPP
Matlab

Backslash
Condition
Number

1 3.358363e-15 2.759199e-15 1.815859e-15 1.837180e-15 6.329660e+02

2 1.517113e-03 1.517113e-03 1.517113e-03 1.517113e-03 1.068959e+15

3 1.422747e-05 2.261760e-05 8.733909e-06 6.084902e-06 1.002161e+15

4 9.931598e-17 9.931598e-17 8.106222e-17 8.106222e-17 1.000000e+00

5 3.932643e+23 3.932643e+23 1.302276e+16 1.302276e+16 1.570243e+41

6 1.513163e-16 1.513163e-16 1.357171e-16 1.357171e-16 6.748520e+01

7 4.472943e+01 4.472943e+01 6.609908e+01 6.609908e+01 2.784168e+16

8 1.796253e-15 1.807151e-15 7.290777e-16 1.089269e-15 1.093088e+03

9 2.298240e-10 2.298240e-10 1.307689e-10 1.307689e-10 1.101082e+08

10 3.857912e-14 3.857912e-14 3.017280e-14 3.017259e-14 1.489926e+04

11 5.856221e-05 5.856221e-05 2.155033e-05 2.155033e-05 1.259243e+15

12 3.526433e-03 3.124242e-03 1.539025e-03 1.655561e-03 8.930231e+14

13 8.951786e-17 8.951786e-17 6.956100e-17 6.956100e-17 1.006886e+00

14 1.706070e-14 1.706081e-14 5.410519e-15 5.411247e-15 5.378205e+05

15 2.765054e-02 2.765054e-02 1.212209e-02 1.186110e-02 3.144575e+15

16 1.633022e-16 1.633022e-16 2.816457e-16 2.766310e-16 8.981329e+00
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