
 
 

 

 

 
Abstract— The various dynamics of the Brusselator chemical 

reaction and the effect of a sinusoidal force acted on the reaction 
as a chaotic oscillator has been investigated. In addition, the 
chaos control  in the forced Brusselator oscillator and regulating 
unstable poles using generalization of the Routh's theorem are 
the main goals of this work. Likewise, we have regarded chaos as 
a type of avoided behavior and also as a desired behavior in 
order to modify the system responses via small perturbation. 

 

 
Index Terms—Brusselator reaction, Chaos, Control, OGY 

method, Generalized Routh-Hurwitz criterion.  
 

I. INTRODUCTION 
    Chaotic oscillations in chemical reactions were 
discovered in the 1970s first by modelling and then by 
experiments for the Brusselator models under external 
action, coupled Brusseltaors, and the Belousov- 
Zhabotinsky (BZ) [11]. The autocatalytic chemical 
reaction phenomenon plays an important role for the 
breakdown of the stability of the thermodynamical branch. 
In other words, the appropriate types of chemical kinetics 
show that there is an essential difference between the laws 
of equilibrium and the laws far from equilibrium. However 
in far from equilibrium the behavior may become very 
specific, it permits us to introduce a distinction in the 
behavior of physical systems which would be 
incomprehensible in an equilibrium world [8]. 

The three-variable autocatalator represents chaotic 
dynamics in an open system structure. This phenomenon 
emphasizes that one of the essential properties of the chaotic 
dynamics is their sensitivity to the initial conditions. When a 
model that includes a dissociation reaction of the autocatalytic 
species YXA +→ , followed by a recombination reaction 

BYX →+ , an unusual sensitivity to initial conditions is 
displayed [3]. Therefore for a chaotic chemical reaction, we 
need a reaction that guarantees the interaction of the species, 
and also we should have one (or more) dissociation reaction 
followed by a recombination reaction. More precisely, a 
dissociation reaction and a recombination reaction that occur 
uninterruptedly or after some buffer steps, guarantee the 
sensitivity to initial conditions. Moreover, the mass action law 
that affiliates the concentrations of species with respect to 
time is able to show the time evolution of a chemical reaction. 

One  of  the  simple  models  that  is  able to exhibit complex  
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dynamics is the so called "Brusselator" model, which is an 
example of an autocatalytic oscillating chemical reaction. 
This model could represent the limit cycle, Andronov-Hopf 
bifurcation, and also the chaotic behavior when a certain 
sinusoidal force acts on the system. This force could be 
created by the heat convection, microwaves, etc, that its 
behavior is sinusoidal with a small intensity. 

Chemical chaos generally corresponds to an unpredictable 
variation in the concentration of some components that enter 
an oscillatory reaction [10]. In other words, chaos in a 
chemical reaction is a nonequilibrium effect that manifests 
macroscopic scales. It is notable that chaos in chemical 
reactions is a subtle effect, not easy to see at the one-atom, or 
one-molecule level. The reason is that the relevant time scales 
are shorter than a femtosecond. Instead, chaos, an oscillating 
chemical reaction, and also other systems exhibiting order in 
macroscopic scales, like a superfluid, or a Bose-Einstein 
condensate, or a laser manifest in extremely long time-scales 
(maybe minutes or even more, i.e., slower time scales than 
those of a single molecule by, at least, 17 powers of 10, and 
also in very long length scales). Thus, something happens that 
is a nonequilibrium phase transition, and that makes these 
systems qualitatively different to those systems that can be 
described with the well known tools of equilibrium statistical 
mechanics (i.e., through a partition function) from the 
knowledge of the molecular structure. 

Briefly, chaos in a chemical reaction cannot be connected 
to atomic or molecular behavior, in the same way as 
hydrodynamic structure (described e.g., by the Navier-Stokes 
equation). As an example, waves and turbulence in the ocean 
cannot be connected to properties of the OH 2 molecule. 
Therefore, the system should be considered as a whole in far 
from the equilibrium, and in our point of view, the system as a 
whole is created by the interaction of its components. More 
precisely, whole is a fuzzy set and the system components are 
its fuzzy subsets. 

Chaotic behavior could be regarded as a dangerous 
situation for a system. Therefore, the chaos control in this case 
plays an important role. On the other hand, chaotic behavior is 
desirable for combustion processes in order to enhance 
agitation of the air-fuel mix and, consequently, acceleration of 
the process [11]. In addition, far from the equilibrium may be 
a source of order. Consequently, the chaos control plays an 
important role in order to change the system dynamics into the 
desired situations. 

The first control experiment in chemical chaos was carried 
out in a BZ reaction by the group of Showalter in 1993. The 
authors applied a map-based, proportional-feedback 
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algorithm to stabilize periodic behavior in the chaotic regime 
of an oscillatory BZ reaction. They have also successfully 
targeted the period-1 orbit in the BZ system [9,10]. 

The dynamical behaviors of the Brusselator system with 
periodic and impulsive inputs have been also investigated in 
2005 and 2008, respectively [7,15].  

In this work, the effect of an external sinusoidal force with 
small intensity in absence of noise on the dynamics of the 
Brusselator chemical reaction is investigated. Since the 
sinusoidal force could perturb the reaction dynamics, 
accordingly, the goals of this work are controlling chaos using 
a local feedback control law by linearization of the system's 
Poincaré map at an unstable periodic orbit (OGY approach), 
and also, regulating unstable poles using generalization of the 
Routh's theorem in discrete dynamical systems, instead of a 
geometrical method that the OGY creators have done.  

 

II. BRUSSELATOR AND FORCED BRUSSELATOR MODEL 

A. Brusselator Reaction 
The mechanism for the classical Brusselator chemical 

reaction is as follow: 
                                      XA → 1k                                   (1) 
 
                                DYXB +→+ 2k                             (2) 
 
                              XYX 32 3→+ k                                   (3) 
 

                                  EX → 4k                                     (4) 
This model describes a chemical system that converts a 

reactant A to a final product E  through four steps and four 
intermediate species, ,,, YBX  and D . Step (2) and (3) are 
biomolecular, and autocatalytic trimolecular reactions, 
respectively. Based on the mechanism of Brusselator 
reaction, product E  is resulted from species X  in step (4). 
In addition,  species X  is the result of steps (1) and (3). 
These relationships could show the sensitivity to the initial 
conditions. 

Denoting the concentrations of ,,,,, XEDBA  and Y  by 
],[],[],[],[],[ XEDBA  and ][Y , respectively, the evolution 

of the concentrations of the species as a function of the time 
t  using the mass action law are as follows: 
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where jk  )4,3,2,1( =j  is the reaction rate and represented 

in units of ( ) 1. −smole  .  Since   the   species D   and  E    
do not influence the others, therefore, we ignore (7) and (8). 
Moreover, for simplicity, we suppose that ][A  and ][B  are 
maintained constant (i.e., a=][A , b=][B , where 0, >ba ), 
and all reaction rates jk  )4,3,2,1( =j  are set equal to unity. 

Thus, the ordinary differential equations that describe the 
Brusselator chemical reaction are as follow: 
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The system of ODEs (11) has one fixed point 0][ =eqX , 

and abeq =][Y . The Jacobian matrix at the fixed point is 

obtained as follow: 

                       












−−
−= 2

2
][,][

1
ab

ab
eqeq YXJ                           (12) 

Consequently, the characteristic polynomial of the 
Jacobian matrix at the fixed point is 
 
                          0)1( 222 =+λ+−+λ aba .                       (13) 
 
By Routh's theroem [1], the linearized equation in the 
neighborhood of the fixed point is unstable if and only if 

12 +> ab , and is stable if and only if 12 +< ab . 
Therefore, for 12 +> ab , we have a limit cycle (see 
Fig.1).   

Assuming 122 += ab ,  an interesting behavior known as 
Andronov-Hopf bifurcation occurs. It arises when increasing 
the value of the system's control parameter ( µ ) stirs two 
complex conjugate eigenvalues of the Jacobian matrix at 

0=µ from left-hand side of the imaginary axis to right-hand 
side in the plane of complex variables [2,12]. Letting   

122 += ab , (13)  is  changed   into  the  following equation:  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                                 
                             
 

 

  Fig. 1    Limit cycle behavior in Brusselator chemical reaction. 
molea 1= ,  moleb 3=  . ][X and ][Y  are represented in units 

of mole . 
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                                   022 =+λ a  .                                       (14) 
 
It is apparent that the eigenvalues of (12) are pure 
imaginary and nonzero at 122 += ab . Moreover, the 
rate of the real part of the eigenvalues of (12) is nonzero 
at 122 += ab , that is, 
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Thus, using the thermodynamic stability criterion or 
normal mode analysis (e.g., Poincaré-Andronov-Hopf 
theorem), we could conclude that if 12 += ab , then the 
Andronov-Hopf bifurcation will be occurred (see Fig.2). 

B. Forced Brusselator Reaction 
 

The non-autonomous forced Brusselator chemical reaction 
is the classical Brusselator system whenever a sinusoidal 
force with a small intensity acts on it. This sinusoidal force 
could be created by the heat convection, microwaves, etc, on 
the reaction, and it could change the reaction kinetics. In other 
words, the dynamics of the forced Brusselator chemical 
reaction could be chaotic for certain values of the sinusoidal 
forcing amplitude. 

The non-autonomous system of ordinary differential 
equations which describes the forced Brusselator chemical 
reaction is as follow: 
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where   ][A=a ,    ][B=b     )0,( >ba ,     [.]      shows    the 
concentration of the species, f is the intensity (amplitude) 
of  the sinusoidal force (in units of Newton),  and ω  is the   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 

angular velocity (in units of srad ). 
The forced Brusselator system shows the chaotic behavior  

for molea 4.0= , moleb 2.1= , 05.0=f N, and 
srad81.0=ω . [7] 

 Fig.3 shows the forced Brusselator reaction state space and 
it reveals that the system behavior is chaotic in 
far-from-equilibrium kinetics (see Fig.3). The 
far-from-equilibrium concept means that the system does not 
have an equilibrium point. Instead, it evolves in an 
equilibrium basin known as the basin of attraction. In 
addition, since the chaotic dynamics do not have an 
equilibrium point and they evolve in an equilibrium basin, 
therefore, a chaotic behavior evolves in far-from-equilibrium. 
Likewise, it is notable that since the random dynamics do not 
evolve in an equilibrium basin, thus, the far-from-equilibrium 
is different from the random dynamics. 

 

III. CHAOS CONTROL 
We again consider the system of ODEs that describes the 

forced Brusselator dynamics (i.e., (15)), where 
molea 4.0= , moleb 2.1= , 05.0=f N, and 
srad81.0=ω . Our goal in this section is chaos control in 

the forced Brusselator system using a control method which is 
based on the local feedback control law by linearization of the  
system's Poincaré mapping at one unstable periodic orbit 
(OGY approach). The process of controlling chaos based on 
OGY method is directed to improving a desired behavior by 
making only small time-dependent perturbations in an 
accessible (adjustable) system parameter. The fundamental 
basis of the OGY approach is that a chaotic attractor has 
embedded within it an infinite number of unstable periodic 
orbits [4,5,6,13]. We also regulate the system's unstable poles 
by generalization of the Routh's theorem. In this context, we 
consider a new time-dependent value )(tθ  where 0)0( =θ as 

follow ( molet 5.0][ 0 ==X , and molet 2.0][ 0 ==Y ) : 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 Fig. 2    Andronov-Hopf bifurcation  in Brusselator chemical 
reaction. molea 1=  ,  moleb 2= . ][X and ][Y  are 

represented in units of mole . 
 

 Fig. 3    State space of the chaotic behavior  in  forced  Brusselator 
chemical reaction. molea 4.0= , moleb 2.1= . ][X and 

][Y  are represented in units of mole . 
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In order to find the fixed points, we should solve 
simultaneously the following equations: 
 

,0)cos(])[1(][][][ 2 =ωθ++−+=
∂

∂ fba
t

XYXX             (17) 
 
 

0][][][][ 2 =−=
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∂ YXXY b
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 .                                            (18) 
 
 
By substituting (18) in (17), we obtain: 
 
                          0][)cos( =−ωθ+ Xfa                          (19) 

 
By deriving the both insides of (19) with respect to time, 
we obtain: 
 

0][)sin( =
∂

∂
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f X . 
 

 
Since 1=

∂
θ∂
t

, and also, 0][
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∂
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t
X , therefore, 

 
0)sin( =ωθω− f . 

 
Since 0≠ωf , we could conclude: 
 
                           

ω
π

=θ
m

m      ,      ∈m  .                       (20) 
 

Substituting (20) in (19), the system's fixed points are as 
follows: 

fa m
eq )1(][ −+=X ,         

fa
b

meq
)1(

][
−+

=Y  

By assuming m  is an odd number, we obtain the system's 
fixed point moleeq 35.0][ =X , and moleeq 43.3][ =Y . 

We calculate the Jacabian matrix at the fixed point (i.e., A ) 
and investigate its instability: 
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The eigenvalues of matrix A  are obtained as follow: 
347792.0039280.0 i±=λ ±    ,       1−=i  

Since 0}Re{ >λ ± , therefore, we conclude that the 
computed fixed point is unstable. Based on the OGY 
fundamental basis (i.e., an infinite number of unstable 
periodic orbits are embedded in the chaotic attractor), we 
consider  a linear approximation for the forced Brusselator 
system's Poincaré map at the computed unstable fixed point. 
We assume that the magnitude of the sinusoidal force (i.e., 
f ) is the system's accessible control parameter and it could 

be perturbed in close of a nominal value (i.e., 05.0=f  N). 

In addition, we assume that the system is chaotic at ff = . 
We calculate the matrix B which is a column vector and 
defined as a partial derivative with respect to the system's 
control parameter at the unstable fixed point: 


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

−
=

0
1

B  

The controllability matrix C is calculated as follow: 


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



 −−
=≡

201.10
201.01

][ ABBC   

Since matrix C  is 22× , and 0)det( ≠C , 
therefore, 2)dim(Im == CCRank . Thus, based on the 
uniqueness theorem, the pole placement problem has a 
unique solution [5]. 

Grebogi, et al. assumed a linear approximation for the 
system's Poincaré mapping in neighborhood of an unstable 
periodic orbit and control parameter [6,5]. By considering the 
following discrete-time dynamical system  

),(1 fF ii Ψ=Ψ +  , 
we could approximate it based as follow: 
       )](][[)(1 ff eqi

T
eqi Ψ−Ψ−=Ψ−Ψ + BKA           (21) 

where ∈Ψi n  and F  is sufficiently smooth in both 
variables and f (the magnitude of the sinusoidal force) is 

the control parameter. Matrix TK , and consequently, matrix 
TBKA −  (regulator matrix) are calculated so as to regulate 

the unstable periodic orbit. By applying the pole placement 
technique, the regulator matrix will be found as follow: 
 









−−

++−
=−

1225.0201.1
832639.048626.01225.0201.0 211 kkkTBKA

 
where 1k  and 2k  are real numbers and they should be 
computed so as to regulate the unstable fixed point. The 
characteristic polynomial of the regulator matrix is obtained 
as follow: 

                              021
2 =σ+λσ+λ                               (22) 

where   
0785.011 −=σ k , and 

1225.0706498.0999999.0 122 ++=σ kk . 
The last stage of the pole placement technique is finding 

1k and 2k  in order to stabilize the unstable fixed point. In 
other words, the eigenvalues of the regulator matrix must be 
smaller than unity.  Since we do not deal with some ODEs, 
therefore the applying Routh's theorem is not sufficient in this 
case. In this regard, we define a mapping from inside of the 
circle centered at zero with radius unity into the negative half 
plane of the complex variables where the real parts of the 
numbers are negative. By using this trick, we can use the 
Routh's theorem in discrete dynamical systems in order to 
stabilize the system's unstable poles. Substituting the 
following mapping, that is, 

1
1

−ϕ
+ϕ

λ   

in (22), after some algebraic manipulations, we obtain the 
following polynomial: 
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Based on the Routh's theorem [1], the real parts of the 
roots of (23) are negative if and only if 
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For instance, 40.01 −=σ  and 03.02 =σ  satisfy the 
inequalities (24). Therefore, the regulator matrix is 
obtained as follow: 
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By substituting (25) in (21), the linearized Poincaré 
mapping for the forced Brusselator chemical reaction 
will be found: 
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Equation (26) contains two mappings that they exhibit the 

control procedure. In addition, Fig.4 shows the result of 
control action on the system. As seen, by adjusting the control 
parameter in neighborhood of the nominal value, the unstable 
fixed point that is embedded in the chaotic forced Brusselator 
chemical reaction has been stabilized.  
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The chaotic dynamics could be considered as an avoided 
behavior. This hypothesis could be acceptable in the cases 
that the human activities are not able to adapt themselves with 
nature. For instance, the temperature difference between two 
layers of fluid creates some counter-rotating vortices. If a 
rigid body moves between these layers, since it is not able to 
adapt itself with this chaotic behavior, therefore, this behavior 
could be dangerous for its structure. If we suppose this 
situation (i.e., chaos as an avoided behavior) in forced 
Brusselator system, we should eliminate the effect of the 
chaotic behavior source (i.e., the sinusoidal forcing). In this 
regard, we could radiate an electromagnetic ray, or add a 
catalyst for eliminating the sinusoidal forcing. Assuming that 
the adjustable system control parameter is the forcing 
frequency, the behavior of the electromagnetic ray should be 
sinusoidal that its intensity is f and its angular velocity is 

ω−π . By rating this ray to the forced Brusselator system, we 
could omit the effect of sinusoidal force. Consequently, the 
forced Brusselator reaction behavior will not be chaotic and it 
will be periodic as seen in Fig. 5(a). 

Another, perhaps more positive view, of the opportunities 
provided by chaos control is to imagine that we have a 
chemical reactor set up and operating under a standard set of 
operating conditions (e.g., flow rates, input concentrations, 
etc) and we want to be able to modify the response via small 
perturbations of those operating conditions in a way that 
slightly different perturbations lead to significantly different 
responses (all periodic orbits that are embedded in the chaotic 
attractor). In this case, the chaos control approach is one that 
might be easily realizable in practice. In other words, by using 
any accessible parameter, we are able to modify the chaotic 
behavior and change the system dynamics into a desired 
periodic orbit. In the forced Brusselator system, we supposed 
that the sinusoidal forcing amplitude is the accessible 
parameter (likewise, we could choose the frequency as an 
accessible parameter as the previous case). It is notable that 
we could vary the control parameter while it is restricted to lie 
in some small interval. For instance, By considering that the 
forcing amplitude is the system adjustable control parameter 
and the frequency is fixed, if we choose 04.0=f  N, we 
could have a periodic behavior as seen in Fig.5(b). By 
considering that the frequency is the adjustable control 
parameter and the forcing amplitude is fixed, if we choose 

srad65.0=ω , we could have another periodic behavior as 
seen in Fig.5(c). It should be noted that one control parameter 
that obeys the controllability condition is enough for adjusting 
and controlling chaos. The control procedure is activated only 
if iΨ  satisfies the conditions that the system control 
parameter lies in a small interval. Since nonlinearity is not 
included in the linearized system's Poincaré mapping, the 
control procedure may not be able to bring the orbit to the 
stabilized fixed point. Interestingly, since the orbit on the 
uncontrolled chaotic attractor is ergodic [5], therefore, the 
control parameter limitation is satisfied after some time. This 
chaotic transient is observable in Fig.5(b) and Fig.5(c). 
Moreover, Romeiras, et al. discussed that the distribution of 
chaotic transient lengths of such chaotic transient depends 
sensitively on the random initial conditions in the basin of 

 Fig. 4    Stability of the unstable periodic orbit in the chaotic forced 
Brusselator system. moleeq 35.0][ =X  , and 

moleeq 43.3][ =Y . The horizontal axis shows the iteration 

numbers, and the vertical axis shows the concentration of X  
and Y  .   
 

eq][X  

eq][Y  
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attraction and it will be exponential [5]. Consequently, the 
probability that the time is chosen in the basin of attraction to 
achieve control is obtained as follow: 

τ










τ
τ

−
τ

= ∫
τ

dP exp1  

where τ  is the average time to achieve control. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

IV. CONCLUDING REMARKS 
The aims of this work were investigation and control of a 

chemical chaotic oscillation known as forced classic 
Brusselator reaction. The control procedure was done using 
the OGY method. The regulating unstable periodic orbit 
which had been embedded in the chaotic attractor was done 
using generalization of the Routh's theorem. We also 
considered two cases for chaos control: first, chaos as an 
avoided behavior, and second, chaos as a desired behavior. 
The first assumption is acceptable when the human activities 
are not able to adapt themselves with nature, and the second 
assumption is important in order to modify the system 
dynamics. In the last section, we emphasized that because of 
nonlinearity, we have a chaotic transient to achieve the 
control procedure. Interestingly, Tél presented a method for 
the controlling transient chaos [14]. 
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Fig. 5   The result of chaos control (as an avoided behavior) to a 
periodic behavior (a), The result of chaos control to a periodic orbit by 
assuming that the forcing amplitude is the control parameter (b), The 
result of chaos control to a periodic orbit by assuming that the 
frequency is the control parameter (c). The time series in the restricted 
area in (b) and (c) are the chaotic transient. They also determine the 
time to achieve control. 
 

(a) 

(b) 

(c) 

Proceedings of the World Congress on Engineering 2010 Vol III 
WCE 2010, June 30 - July 2, 2010, London, U.K.

ISBN: 978-988-18210-8-9 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2010


	INTRODUCTION
	brusselator and forced Brusselator model
	Brusselator Reaction
	Forced Brusselator Reaction

	chaos control
	Concluding remarks
	Acknowledgment
	References



