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Abstract—Block Krylov subspace spectral (KSS)
methods are a “best-of-both-worlds” compromise be-
tween explicit and implicit time-stepping methods for
variable-coefficient PDE, in that they combine the ef-
ficiency of explicit methods and the stability of im-
plicit methods, while also achieving spectral accuracy
in space and high-order accuracy in time. Block KSS
methods compute each Fourier coefficient of the solu-
tion using techniques developed by Gene Golub and
Gérard Meurant for approximating elements of func-
tions of matrices by block Gaussian quadrature in the
spectral, rather than physical, domain. This paper
describes how block KSS methods can be applied to
a variety of equations, and also demonstrates their su-
periority, in terms of accuracy and efficiency, to other
Krylov subspace methods in the literature.
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1 Introduction

In [11] a class of methods, called block Krylov subspace
spectral (KSS) methods, was introduced for the pur-
pose of solving parabolic variable-coefficient PDE. These
methods are based on techniques developed by Golub and
Meurant in [4] for approximating elements of a function of
a matrix by Gaussian quadrature in the spectral domain.
In [12], these methods were generalized to the second-
order wave equation, for which these methods have ex-
hibited even higher-order accuracy.

It has been shown in these references that KSS methods,
by employing different approximations of the solution op-
erator for each Fourier coefficient of the solution, achieve
higher-order accuracy in time than other Krylov subspace
methods (see, for example, [9]) for stiff systems of ODE,
and they are also quite stable, considering that they are
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explicit methods. They are also effective for solving sys-
tems of coupled equations, such as Maxwell’s equations
[16].

In this paper, we review block KSS methods, as applied to
various types of PDE, and compare their performance to
other Krylov subspace methods from the literature. Sec-
tion 2 reviews the main properties of block KSS methods,
as applied to the parabolic problems for which they were
designed. Section 3 discusses implementation details, and
demonstrates why KSS methods need to explicitly gener-
ate only one Krylov subspace, although information from
several is used. In Section 4, we discuss modifications
that must be made to block KSS methods in order to
apply them to systems of coupled wave equations, such
as Maxwell’s equations. Numerical results are presented
in Section 5, and conclusions are stated in Section 6.

2 Krylov Subspace Spectral Methods

We first review block KSS methods, which are easier to
describe for parabolic problems. Let S(t) = exp[−Lt]
represent the exact solution operator of the problem

ut + Lu = 0, t > 0, (1)

with appropriate initial conditions and periodic boundary
conditions. The operator L is a second-order, self-adjoint,
positive definite differential operator.

Let ⟨⋅, ⋅⟩ denote the standard inner product of functions
defined on [0, 2�]. Block Krylov subspace spectral meth-
ods, introduced in [11], use Gaussian quadrature on the
spectral domain to compute the Fourier coefficients of
the solution. These methods are time-stepping algo-
rithms that compute the solution at time t1, t2, . . ., where
tn = nΔt for some choice of Δt. Given the computed so-
lution ũ(x, tn) at time tn, the solution at time tn+1 is
computed by approximating the Fourier coefficients that
would be obtained by applying the exact solution opera-
tor to ũ(x, tn),

û(!, tn+1) =

〈
1√
2�
ei!x, S(Δt)ũ(x, tn)

〉
. (2)
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In [4] Golub and Meurant describe a method for comput-
ing quantities of the form

uT f(A)v, (3)

where u and v are N -vectors, A is an N ×N symmetric
positive definite matrix, and f is a smooth function. Our
goal is to apply this method with A = LN where LN is
a spectral discretization of L, f(�) = exp(−�t) for some
t, and the vectors u and v are obtained from ê! and
un, where ê! is a discretization of 1√

2�
ei!x and un is the

approximate solution at time tn, evaluated on an N -point
uniform grid.

The basic idea is as follows: since the matrix A is sym-
metric positive definite, it has real eigenvalues

b = �1 ≥ �2 ≥ ⋅ ⋅ ⋅ ≥ �N = a > 0, (4)

and corresponding orthogonal eigenvectors qj , j =
1, . . . , N . Therefore, the quantity (3) can be rewritten
as

uT f(A)v =
N∑
j=1

f(�j)u
Tqjq

T
j v. (5)

which can also be viewed as a Riemann-Stieltjes integral

uT f(A)v = I[f ] =

∫ b

a

f(�) d�(�). (6)

As discussed in [4], the integral I[f ] can be approximated
using Gaussian quadrature rules, which yields an approx-
imation of the form

I[f ] =
K∑
j=1

wjf(�j) +R[f ], (7)

where the nodes �j , j = 1, . . . ,K, as well as the weights
wj , j = 1, . . . ,K, can be obtained using the symmetric
Lanczos algorithm if u = v, and the unsymmetric Lanc-
zos algorithm if u ∕= v (see [7]).

In the case u ∕= v, there is a possibility that the weights
may not be positive, which destabilizes the quadrature
rule (see [1] for details). Instead, we consider[

u v
]T
f(A)

[
u v

]
, (8)

which results in the 2× 2 matrix∫ b

a

f(�) d�(�) =

[
uT f(A)u uT f(A)v
vT f(A)u vT f(A)v

]
, (9)

where �(�) is a 2× 2 matrix function of �, each entry of
which is a measure of the form �(�) from (6).

In [4] Golub and Meurant showed how a block method
can be used to generate quadrature formulas. We will
describe this process here in more detail. The integral∫ b
a
f(�) d�(�) is now a 2 × 2 symmetric matrix and the

most general K-node quadrature formula is of the form∫ b

a

f(�) d�(�) =
K∑
j=1

Wjf(Tj)Wj + error, (10)

with Tj and Wj being symmetric 2 × 2 matrices. By
diagonalizing each Tj , we obtain the simpler formula∫ b

a

f(�) d�(�) =
2K∑
j=1

f(�j)vjv
T
j + error, (11)

where, for each j, �j is a scalar and vj is a 2-vector.

Each node �j is an eigenvalue of the matrix

TK =

⎡⎢⎢⎢⎢⎢⎣
M1 BT1
B1 M2 BT2

. . .
. . .

. . .

BK−2 MK−1 BTK−1

BK−1 MK

⎤⎥⎥⎥⎥⎥⎦ , (12)

which is a block-triangular matrix of order 2K. The vec-
tor vj consists of the first two elements of the correspond-
ing normalized eigenvector. To compute the matrices Mj

and Bj , we use the block Lanczos algorithm, which was
proposed by Golub and Underwood in [6].

We are now ready to describe block KSS methods. For
each wave number ! = −N/2 + 1, . . . , N/2, we define
R0(!) =

[
ê! un

]
and compute the QR factorization

R0(!) = X1(!)B0(!). We then carry out block Lanczos
iteration, applied to the discretized operator LN , to ob-
tain a block tridiagonal matrix TK(!) of the form (12),
where each entry is a function of !.

Then, we can express each Fourier coefficient of the ap-
proximate solution at the next time step as

[ûn+1]! =
[
BH0 E

H
12 exp[−TK(!)Δt]E12B0

]
12

(13)

where E12 =
[

e1 e2

]
. The computation of (13) con-

sists of computing the eigenvalues and eigenvectors of
TK(!) in order to obtain the nodes and weights for Gaus-
sian quadrature, as described earlier.

This algorithm has local temporal accuracy O(Δt2K−1)
[11]. Furthermore, block KSS methods are more accurate
than the original KSS methods described in [14], even
though they have the same order of accuracy, because
the solution un plays a greater role in the determination
of the quadrature nodes. They are also more effective
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for problems with oscillatory or discontinuous coefficients
[11].

Block KSS methods are even more accurate for the
second-order wave equation, for which block Lanczos it-
eration is used to compute both the solution and its time
derivative. In [12, Theorem 6], it is shown that when the
leading coefficient is constant and the coefficient q(x) is
bandlimited, the 1-node KSS method, which has second-
order accuracy in time, is also unconditionally stable.
In general, as shown in [12], the local temporal error is
O(Δt4K−2) when K block Gaussian nodes are used.

3 Implementation

KSS methods compute a Jacobi matrix corresponding to
each Fourier coefficient, in contrast to traditional Krylov
subspace methods that normally use only a single Krylov
subspace generated by the initial data or the solution
from the previous time step. While it would appear that
KSS methods incur a substantial amount of additional
computational expense, that is not actually the case, be-
cause nearly all of the Krylov subspaces that they com-
pute are closely related by the wave number !, in the 1-D
case, or !⃗ = (!1, !2, . . . , !n) in the n-D case.

In fact, the only Krylov subspace that is explicitly com-
puted is the one generated by the solution from the pre-
vious time step, of dimension (K + 1), where K is the
number of block Gaussian quadrature nodes. In ad-
dition, the averages of the coefficients of Lj , for j =
0, 1, 2, . . . , 2K − 1, are required, where L is the spatial
differential operator. When the coefficients of L are in-
dependent of time, these can be computed once, during a
preprocessing step. This computation can be carried out
in O(N logN) operations using symbolic calculus [13, 15].

With these considerations, the algorithm for a single time
step of a 1-node block KSS method for solving (1), where
Lu = −puxx + q(x)u, with appropriate initial conditions
and periodic boundary conditions, is as follows. We de-
note the average of a function f(x) on [0, 2�] by f , and
the computed solution at time tn by un.

ûn = fft(un), v = Lun, v̂ = fft(v)
for each ! do

�1 = −p!2 + q (in preprocessing step)
�1 = v̂(!)− �1û

n(!)

�2 = ⟨un, v⟩ − 2 Re [ûn(!)v(!)] + �1∣un(!)∣2
e! = [⟨un, un⟩ − ∣ûn(!)∣2]1/2

T! =

[
�1 �1/e!

�1/e! �2/e
2
!

]
ûn+1(!) = [e−T!Δt]11û

n(!) + [e−T!Δt]12e!
end

un+1 = ifft(ûn+1)

It should be noted that for a parabolic problem such
as (1), the loop over ! only needs to account for non-
negligible Fourier coefficients of the solution, which are
relatively few due to the smoothness of solutions to such
problems.

4 Application to Maxwell’s Equations

We consider Maxwell’s equation on the cube [0, 2�]3, with
periodic boundary conditions. Assuming nonconductive
material with no losses, we have

div Ê = 0, div Ĥ = 0, (14)

curl Ê = −�∂Ĥ

∂t
, curl Ĥ = "

∂Ê

∂t
, (15)

where Ê, Ĥ are the vectors of the electric and magnetic
fields, and ", � are the electric permittivity and magnetic
permeability, respectively.

Taking the curl of both sides of (15) yields

�"
∂2Ê

∂t2
= ΔÊ + �−1curl Ê×∇�, (16)

�"
∂2Ĥ

∂t2
= ΔĤ + "−1curl Ĥ×∇". (17)

In this section, we discuss generalizations that must be
made to block KSS methods in order to apply them to a
non-self-adjoint system of coupled equations such as (16).
Additional details are given in [16].

First, we consider the following 1-D problem,

∂2u

∂t2
+ Lu = 0, t > 0, (18)

with appropriate initial conditions, and periodic bound-
ary conditions, where u : [0, 2�]× [0,∞)→ ℝn for n > 1,
and L(x,D) is an n × n matrix where the (i, j) entry is
an a differential operator Lij(x,D) of the form

Lij(x,D)u(x) =

mij∑
�=0

aij� (x)D�u, D =
d

dx
, (19)

with spatially varying coefficients aij� , � = 0, 1, . . . ,mij .

Generalization of KSS methods to a system of the form
(18) can proceed as follows. For i, j = 1, . . . , n, let Lij(D)
be the constant-coefficient operator obtained by averag-
ing the coefficients of Lij(x,D) over [0, 2�]. Then, for
each wave number !, we define L(!) be the matrix with
entries Lij(!), i.e., the symbols of Lij(D) evaluated at !.
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Next, we compute the spectral decomposition of L(!) for
each !. For j = 1, . . . , n, let qj(!) be the Schur vectors
of L(!). Then, we define our test and trial functions by

�⃗j,!(x) = qj(!)⊗ ei!x.

For Maxwell’s equations, the matrix AN that discretizes
the operator

AÊ =
1

�"

(
ΔÊ + �−1curl Ê×∇�

)
is not symmetric, and for each coefficient of the solu-
tion, the resulting quadrature nodes �j , j = 1, . . . , 2K,
from (11) are now complex and must be obtained by a
straightforward modification of block Lanczos iteration
for unsymmetric matrices.

5 Numerical Results

In this section, we compare the performance of block KSS
methods with various methods based on exponential in-
tegrators [8, 10, 19].

5.1 Parabolic Problems

We first consider a 1-D parabolic problem of the form (1),
where the differential operator L is defined by Lu(x) =
−pu′′(x) + q(x)u(x), where p ≈ 0.4 and

q(x) ≈ −0.44 + 0.03 cosx− 0.02 sinx+ 0.005 cos 2x−
0.004 sin 2x+ 0.0005 cos 3x

is constructed so as to have the smoothness of a function
with three continuous derivatives, as is the initial data
u(x, 0). Periodic boundary conditions are imposed.

We solve this problem using the following methods:

∙ A 2-node block KSS method. Each time step re-
quires construction of a Krylov subspace of dimen-
sion 3 generated by the solution, and the coefficients
of L2 and L3 are computed during a preprocessing
step.

∙ A preconditioned Lanczos iteration for approximat-
ing e−�Av, introduced in [17] for approximating
the matrix exponential of sectorial operators, and
adapted in [19] for efficient application to the so-
lution of parabolic PDE. In this approach, Lanczos
iteration is applied to (I+ℎA)−1, where ℎ is a param-
eter, in order to obtain a restricted rational approxi-
mation of the matrix exponential. We use m = 4 and
m = 8 Lanczos iterations, and choose ℎ = Δt/10, as
in [19].

∙ A method based on exponential integrators, from [8],
that is of order 3 when the Jacobian is approximated
to within O(Δt). We use m = 8 Lanczos iterations.

Since the exact solution is not available, the error is es-
timated by taking the ℓ2-norm of the relative difference
between each solution, and that of a solution computed
using a smaller time step Δt = 1/64 and the maximum
number of grid points.

The results are shown in Figures 1 and 2. As the
number of grid points is doubled, only the block KSS
method shows an improvement in accuracy; the precon-
ditioned Lanczos method exhibits a slight degradation in
performance, while the explicit fourth-order exponential
integrator-based method requires that the time step be
reduced by a factor of 4 before it can deliver the expected
order of convergence; similar behavior was demonstrated
for an explicit 3rd-order method from [9] in [14].

The preconditioned Lanczos method requires 8 Lanczos
iterations to match the accuracy of a block KSS method
that uses only 2. On the other hand, the block KSS
method incurs additional expense due to (1) the compu-
tation of the moments of L, for each Fourier coefficient,
and (2) the exponentiation of separate Jacobi matrices for
each Fourier coefficient. These expenses are mitigated by
the fact that the first takes place once, during a prepro-
cessing stage, and both tasks require an amount of work
that is proportional not to the number of grid points, but
to the number of non-negligible Fourier coefficients of the
solution.

Figure 1: Estimates of relative error at t = 0.1 in solu-
tions of (1) computed using preconditioned exponential
integrator [19] with 4 and 8 Lanczos iterations, and a 2-
node block KSS method. All methods compute solutions
on an N -point grid, with time step Δt, for various values
of N and Δt.

Proceedings of the World Congress on Engineering 2010 Vol III 
WCE 2010, June 30 - July 2, 2010, London, U.K.

ISBN: 978-988-18210-8-9 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2010



Figure 2: Estimates of relative error at t = 0.1 in solu-
tions of (1) computed using a 4th-order method based on
an exponential integrator [10] with 8 Lanczos iterations,
and a 2-node block KSS method. Both methods com-
pute solutions on an N -point grid, with time step Δt, for
various values of N and Δt.

5.2 Maxwell’s Equations

We now apply a 2-node block KSS method to (16), with
initial conditions

Ê(x, y, z, 0) = F(x, y, z),
∂Ê

∂t
(x, y, z, 0) = G(x, y, z),

(20)
with periodic boundary conditions. The coefficients �
and " are given by

�(x, y, z) = 0.4077 + 0.0039 cos z + 0.0043 cos y −
0.0012 sin y + 0.0018 cos(y + z) +

0.0027 cos(y − z) + 0.003 cosx+

0.0013 cos(x− z) + 0.0012 sin(x− z) +

0.0017 cos(x+ y) + 0.0014 cos(x− y),

"(x, y, z) = 0.4065 + 0.0025 cos z + 0.0042 cos y +

0.001 cos(y + z) + 0.0017 cosx+

0.0011 cos(x− z) + 0.0018 cos(x+ y) +

0.002 cos(x− y).

The components of F and G are generated in a similar
fashion, except that the x- and z-components are zero.

We use a block KSS method that uses K = 2 block
quadrature nodes per coefficient in the basis described
in Section 4, that is 6th-order accurate in time, and a
cosine method based on a Gautschi-type exponential in-
tegrator [8, 10]. This method is second-order in time, and

in these experiments, we use m = 2 Lanczos iterations to
approximate the Jacobian. It should be noted that when
m is increased, even to a substantial degree, the results
are negligibly affected.

Figure 3 demonstrates the convergence behavior for both
methods. At both spatial resolutions, the block KSS
method exhibits approximately 6th-order accuracy in
time as Δt decreases, except that for N = 16, the spatial
error arising from truncation of Fourier series is signifi-
cant enough that the overall error fails to decrease below
the level achieved at Δt = 1/8. For N = 32, the so-
lution is sufficiently resolved in space, and the order of
overgence as Δt→ 0 is approximately 6.1.

We also note that increasing the resolution does not pose
any difficulty from a stability point of view. Unlike ex-
plicit finite-difference schemes that are constrained by a
CFL condition, KSS methods do not require a reduction
in the time step to offset a reduction in the spatial step in
order to maintain boundedness of the solution, because
their domain of dependence includes the entire spatial
domain for any Δt.

The Gautschi-type exponential integrator method is
second-order accurate, as expected, and delivers nearly
identical results for both spatial resolutions, but even
with a Krylov subspace of much higher dimension than
that used in the block KSS method, it is only able to
achieve at most second-order accuracy, whereas a block
KSS method, using a Krylov subsapce of dimension 3,
achieves sixth-order accuracy. This is due to the incorpo-
ration of the moments of the spatial differential operator
into the computation, and the use of Gaussian quadra-
ture rules specifically tailored to each Fourier coefficient.

6 Summary and Future Work

We have demonstrated that block KSS methods can be
applied to Maxwell’s equations with smoothly varying
coefficients, by appropriate generalization of their ap-
plication to the scalar second-order wave equation, in a
way that preserves the order of accuracy achieved for the
wave equation. Furthermore, it has been demonstrated
that while traditional Krylov subspace methods based on
exponential integrators are most effective for parabolic
problems, especially when aided by preconditioning as
in [19], KSS methods perform best when applied to hy-
perbolic problems, in view of their much higher order
of accuracy. Future work will extend the approach de-
scribed in this paper to more realistic applications involv-
ing Maxwell’s equations by using symbol modification to
efficiently implement perfectly matched layers (see [2]),
and various techniques (see [3, 18]) to effectively handle
discontinuous coefficients.
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Figure 3: Estimates of relative error at t = 1 in solutions
of (16), (20) computed using a cosine method based on a
Gautschi-type exponential integrator [8, 10] with 2 Lanc-
zos iterations, and a 2-node block KSS method. Both
methods compute solutions on an N3-point grid, with
time step Δt, for various values of N and Δt.
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