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Abstract—This paper presents an analysis for 

magnetohydrodynamic (MHD) flow of an incompressible 
generalized Oldroyd-B fluid with fractional derivative. The 
fractional calculus approach is introduced to establish the 
constitutive relationship of a viscoelastic fluid. The exact 
solutions for the velocity and shear stress are obtained by using 
the Laplace transform technique for the fractional calculus. 
Moreover, we analyze the characteristics of the velocity field by 
using the analytical solutions. 
 

Index Terms—Oldroyd-B fluid, oscillation, Laplace 
transform, Fox H-function.   
 

I. INTRODUCTION 
The interest for motion problems of non-Newtonian fluids 

has considerably grown because of the wide range of their 
applications. These fluids have been modeled in a number of 
diverse manners with their constitutive equations varying 
greatly in complexity. Among them the Oldroyd-B fluid as a 
special viscolesatic non-Newtonian fluid has had some 
success in describing polymeric liquids, it being more 
amenable to analysis and more importantly experimental. 

Recently, the fractional derivatives [1] are found to be 
quite flexible for describing the behaviors of viscoelastic 
fluids. Many researchers have studied different problems 
related to such fluids. In their works, the constitutive 
equations for generalized non-Newtonian fluids are modified 
from the well known fluid models by replacing the time 
derivative of an integer order by the so-called 
Riemann-Liouville fractional calculus operators. Haitao and 
Xu [2] investigated the Stokes’ problem for a viscoelastic 
fluid with a generalized Oldroyd-B model. Khan and Hyder 
et al. [3-4] considered some fluid with generalized 
Oldroyd-B model. Hyder [5] discussed the flows of 
generalized Oldroyd-B fluid between two side walls 
perpendicular to the plate. Fetecau et al. [6-9] investigated 

some accelerated flows of a generalized Oldroyd-B fluid. 
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 [10-11] studied the flow of a Maxwell fluid 
between two side walls. Khan [12]studied the MHD flow of a 
generalized Oldroyd-B fluid in a circular pipe. 

In this paper, we consider the MHD flow of an 
incompressible generalized Oldroyd-B fluid. The exact 
solutions for the velocity and shear stress fields are obtained 
by using the discrete Laplace transform technique for the 
fractional calculus. The important aspect of the study is that 
the solutions for generalized Oldroyd-B fluid, fractional 
second grade fluid and fractional Maxwell fluid are 
recovered by the current analysis. 

 

II. GOVERNING EQUATIONS 
The constitutive equation of an incompressible and 

unsteady Oldroyd-B fluid is written in the form [2]: 

p= − +T I S , D D(1 )
D Dt t

α β

α βλ μ θ+ = +
SS A .     (1) 

where is the Cauchy stress tensor, T p− I denotes the 
indeterminate spherical stress, S is the extra-stress tensor, 

T= +A L L is the first Rivlin-Ericksen tensor, L is the 
velocity gradient, , ,μ λ θ  are material constants, known as 
the viscosity coefficient, the relaxation and retardation times, 
respectively , and 
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In the above relations is the velocity, ∇ is the gradient 

operator, 

V
Dt

α and Dt
β are based on Riemann- Liouville’s 

definition is defined as [1]: 

0

1 d ( )D ( ) d
(1 ) d ( )

tp
t p

ff t
p t t

τ τ
τ

=
Γ − −∫ , 0 1p≤ < ,     (3) 

where ( )Γ ⋅ is the Gamma function.  
We consider the MHD flow of an incompressible 

generalized Oldroyd-B fluid due to an infinite accelerating 
plate. The fluid occupies the space and the motion is 
produced by the infinite plate. Initially, the system is at rest 
and at time

0y >

0t += the plate starts to oscillate according 
to Vcos( t)ω or Vsin( t)ω . Assuming the velocity field and 
stress of the form 

( , )u y t=V i , .                             (4)  ( , )S y t=S
Where is the velocity and is the unit vectors in the u i
x -direction. Substituting Eq.(4) into Eq.(1) and taking 
account of the initial condition  
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( ,0) 0S y = , ,                                (5) 0y >
the fluid being at rest up to the time , we get 0t =

(1 D ) (1 D ) ( , )t xy t yS u y tα βλ μ θ+ = + ∂ ,                      (6) 

0yy zz xz yzS S S S= = = = , xy yS S x= . Consider that the 

conducting fluid is permeated by an imposed magnetic 
field 0B which acts in the positive -coordinate. In the low- 
magnetic Reynolds number approximation, the magnetic 
body force is represented

y

2
0B uσ . Then, in the absence of a 

pressure gradient in the x -direction, the equation of motion 
yields the following scalar equations: 

2
0xy

u S B
t y

ρ ∂ ∂
= −

∂ ∂
uσ ,                             (7) 

where ρ is the constant density of the fluid. Eliminating xyS  

between Eq.(6) and Eq.(7), we arrive at the following 
fractional differential equation 

2

2
( , ) ( , )(1 D ) (1 D ) (1 D ) ( , )t t

u y t u y t N u
t y

α βλ ν θ λ∂ ∂
+ = + − +

∂ ∂ t y tα ,    

(8) 

      

where /ν μ ρ= is the kinematic viscosity and 2
0 /N Bσ ρ= . 

The associate initial and boundary conditions as follows: 

Initial condition:    
( ,0)( ,0) 0u yu y

t
∂

= =
∂

,  .         (9) 0y >

Boundary conditions:   (0, ) Vsin( t)u t ω=  or  
(0, ) Vcos( t)u t ω= , ,          (10) 0t >

( , )u y t , 
( , ) 0u y t
y

∂
→

∂
 as y → ∞ , .               (11) 0t >

where u is velocity in the x -coordinate direction. 
 

III. VELOCITY FIELD  SHEAR STRESS 
Employing the non-dimensional quantities 

2
* * *

2 2
* * *

2

V V, , ,
V

V V, ,

u y tu y t

NN
A

α β

ρ ρ
μ μ

.ρ ρ μλ λ θ θ
μ μ ρ

= = =

⎛ ⎞ ⎛ ⎞
= = =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

  (12) 

We obtain the dimensionless motion equation as follows (for 
brevity the dimensionless mark “*” is omitted here) 

2

2
( , ) ( , )(1 D ) (1 D ) (1 D ) ( , )t t

u y t u y t N u
t y

α βλ θ λ∂ ∂
+ = + − +

∂ ∂ t y tα . (13)            

Boundary conditions:   
 (0, ) sin( t)u t ω=  or (0, ) cos( t)u t ω= , .       (14) 0t >

In order to obtain an exact solution of the above equation, we 
use Laplace transforms principle of sequential fractional 
derivatives, yields 

2

2
( , ) ( )(1 ) ( , ) 0

(1 )
U y p p N p U y p

y p

α

β
λ

θ
∂ + +

− =
∂ +

.    (15)                        

Boundary conditions become： 

2(0, )U p
p

( , )U y p ,  ( , ) 0yU y p∂ →  as y → ∞ .                 (17)  

where is the image function of and( , )U y p ( , )u y t p is the 
transform parameter. Solving Eqs.(15)- (17), we obtain 

1
2

2 2
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ω θ
+ +

= −
+ +
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The shear stress can be calculated from Eq.(6), taking the 
Laplace transform and introducing Eq.(17)-(18), we get 

1
1 12
2 2

2 2
1 ( )(1( , ) ( ) exp[ ( ) ]
1 1

p p NT y p p N y
p p p

β α

α β
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            (20) 
1
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β α
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θ λ
λ ω θ

⎛ ⎞+ +
= − + −⎜ ⎟⎜ ⎟+ + +⎝ ⎠

)+

            (21) 
where 2( , ) /xyT y p S A ρ= . 

In order to avoid the burdensome calculations of residues 
and contour integrals, we apply discrete inverse Laplace 
transform to get to the velocity and the stress fields. Firstly, 
write Eqs.(18)-(19) as series forms, and apply inverse 
Laplace transform. In terms of Fox H-function, we write the 
solution as the simple form: 
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Where the property of the Fox H-function is 
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Adopting a similar procedure, we obtain 
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IV. LIMITING CASES 
(1) When , the Oldroyd-B fluid isn’t influenced by 
magnetic field. 

0N =

(2) If and0N = 0α ≠ , 0λ → , then the non-dimensional 
motion equation and the associated boundary conditions are 

   
2

2
( , ) ( , )(1 D )t

u y t u y t
t y

βθ∂ ∂
= +

∂ ∂
 .                   (27) 

Boundary conditions:    
(0, ) sin( t)u t ω=  or (0, ) cos( t)u t ω= , .     (28) 0t >

Which represent the velocity field for a generalized second 
grade fluid. Further, Eqs.(27)- (28) are similar with ref. [13].  
(3) If and0N = 0β ≠ , 0θ → . The solutions for a 

generalized Maxwell fluid are recovered. 
 

V. RESULTS AND DISCUSSION 
In this paper, we have presented some oscillating flow of a 

generalized Oldroyd-B fluid. The fractional calculus  
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approach is introduced to establish the constitutive 
relationship of a viscoelastic fluid. The Laplace transform 
and Fox H-function are used to establish analytical solutions. 
In the limiting cases, the generalized second grade fluid and 
generalized Maxwell fluid can be recovered from the present 
solutions. In there, we analyze the characteristics of velocity 

field by using the analytical solutions Eqs.(22)-(26) obtained 
in section 3. 

The motion of the fluid was due to the oscillation of the 
plate parallel x direction, with angular frequency ω . The 
velocity profiles are displayed for different times / 4t kω π=  
( 1,2,3,k =   with 4,5,6,7,8) 1.5ω = in fig.1. Fig.2 shows the 
velocity in the case of magnetohydrodynamic fluid is more 
steady than hydrodynamic. And the magnetic body force is 
favorable to decay of the velocity. Fig.3-5 demonstrate the 
velocity changes with the fractional parametersα and β . We 
can see that their effects on both motions are opposite. The 
non-Newtonian effects are stronger at large values ofα . The 
smaller the values ofα , the more steady of the velocity field. 

0.1y = , 5,λ =  
3,θ = 10,M =  

0.8β =  
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