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PLS Path Modeling with Mode C
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Abstract—Monte Carlo simulations and computa-
tional experiments were carried out to study the per-
formance of partial least squares (PLS) path modeling
with mode C. The empirical results are in line with
the theoretical PLS framework. Inner relationships
are underestimated and outer relationships overesti-
mated.
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1 Introduction

Reflective relationships seek to represent variances and
covariances between the manifest variables that are gen-
erated or caused by a latent variable. So, observed vari-
ables are treated as an effect of unobserved variables [2].
In a reflective measurement model, the manifest variables
are measured with error (Figure 1(a)). Alternatively, for-
mative relationships are used to minimize residuals in
the structural relationship [9]. Here, manifest variables
are treated as forming the unobserved variables, they
are presumed to be error—free, and the construct is es-
timated as a linear combination of the manifest variables
plus a disturbance term (Figure 1(b)). As in this case
all variables forming the construct should be considered,
the disturbance term represents all those non-modeled
causes. Although formative measurement models were
first discussed by [4] and [1], and a number of variables
can be modeled in a better way through formative rela-
tionships, measurement variables have been traditionally
modeled in a reflective mode. [9] and [5] pointed out
that modeling formative modes using a covariance-based
approach may lead to identification problems and Hey-
wood cases. So, researchers may tend to define outer
models as reflective. However, a number of researchers
have pointed out that PLS path modeling overcomes the
identification problems that arise when implementing a
covariance-based approach [15, 17, 19]. That is because
a PLS path modeling algorithm consists of a series of or-
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dinary least squares (OLS) analysis. From a component-
based approach, and “because the off-diagonal elements
are not among the unknown parameters of the model and
because the unobservables are explicitly estimated, there
are no identification problems for recursive PLS models”
[9, p. 443].

In Wold’s PLS approach, a construct is completely
determined by a linear combination of its indicators
[17, 18, 19]. The procedure usually uses a Mode A or
Mode B to model a structural equation model (SEM).
Mode A or simple regression if the SEM includes reflective
outer models. Mode B or multiple regression if formative
outer models are included. However, “the algorithm is
called PLS Mode C if each of Modes A and B is chosen
at least once in the model” [18, p. 10]. To the best of our
knowledge, there are only a small number of published
articles that examine the performance of PLS path mod-
eling algorithm in the presence of formative outer models,
and they are not conclusive. Findings by [3] and [13] are
quite different. For instance, Cassel et al. found that
measurement relationships in formative outer models are
overestimated, while Ringle et al. found that these rela-
tionships are underestimated. Thus, this paper aims to
provide evidence regarding how well PLS path modeling
performs if formative exogenous outer models are mod-
eled using PLS Mode B and reflective endogenous latent
variables are modeled using PLS Mode A. That is, PLS
path modeling with mode C.

2 PLS Path Modeling

The PLS path modeling procedure —presented by Ger-
lach, Kowalski, and Wold in 1979- is a soft modeling
technique and a data analytic tool for estimating struc-
tural equation models (SEM) and building a sequence
of latent variables. PLS path modeling first estimates
the unobservable variables and then the parameters with
an aim toward maximizing the total variance and mini-
mizing residuals of endogenous models regardless of the
covariances among manifest variables. The structural
or inner model describes relationships among constructs
& by means of multiple regressions (Equation 1). §&;
and &; are the exogenous and endogenous latent vari-
ables, respectively, and ;; are the path coefficients that
measure the relationship among constructs. The condi-
tion imposed by Herman Wold is predictor specification,
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Figure 1: Reflective and formative measurement models
(focus on component-based approach)

E(&/&) = >, Bji&, that is, there is no linear relation-
ship between predictor and residual. This condition im-
plies that F(v;/V¢;) = 0, and cov(v;,&;) = 0.

& =Bjo+ Y Bk +v; (1)

Manifest variables revealing or reflecting the effect of a
construct are modeled as indicators of it in a reflective
measurement model. Each manifest variable zj;, is re-
lated by simple ordinary least squares regression with the
underlying construct &; (Equation 2). The loadings A,
determine the extent to which each indicator reflects a
construct; §; is a common factor with mean m, standard
deviation one and it is indirectly observable by the man-
ifest variables. The condition imposed by Herman Wold
is predictor specification, E(xp/€) = Ao + Ap€. This
condition implies that €, has zero mean, and it is uncor-
related with §;. Moreover, the basic design of Herman
Wold assumes that the covariance matrices of all €; are
diagonal. As in a reflective model, where all the indica-
tors of the block of variables reflect the same construct,
there should be high collinearity among these variables.
That is, the blocks of variables must be one-dimensional.

Tih = Njho + N\jn&; + €5 (2)

The latent variable is formed by a set of manifest vari-
ables as a linear function of them plus a residual in for-
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mative outer models (Equation 3). The weights mp, de-
termine the extent to which each indicator contributes to
the formation of the constructs. Each block of manifest
variables may be multidimensional, and multicollinear-
ity among indicators is not a necessary constraint. The
condition imposed by Herman Wold is predictor specifica-
tion E(§/X1, ..., Xp;) = >, maxp. This condition implies
that the residual § has a zero mean, and it is uncorrelated
with the manifest variables x;. Since each construct is
formed by a linear combination of the manifest variables,
the sign of each weight 7, should be the same sign as the
correlation between z;, and & [15].

&= mntin+0; (3)
h

2.1 PLS path modeling algorithm

The PLS path modeling algorithm is structured in three
stages [17, 18, 19]. The first stage computes the case
values of the latent variables; the second stage focuses
on the inner and outer relationships; and in the third
stage, location parameters of the latent variables, Ajxo
and (3o, are estimated. Only the first stage is iterative.
The algorithm for Wold’s procedure is as follows.

The first stage. The algorithm starts choosing an ar-
bitrary weight vector —outer weights— to first relate each
latent variable with their own manifest variables. Usually
this vector is a vector of ones. Each standardized latent
variable Y; —zero mean, unit variance- is computed as an
exact linear combination of their own centered manifest

variables:
Yy = winein (4)
where wj, are called the outer weights.

An auxiliary latent variable Z; is introduced as a coun-
terpart to the variable Y;. Each Z; is computed as a
weighting sum of the latent variables which is related to:

Zj X ZeﬁYi (5)

where e;; are called the inner weights. There are three
different weighting schemes that may be used to compute
eji: the centroid, the factorial and the path weighting
schemes. The first was introduced by Wold, and the last
two by [11]. The simplest scheme is the centroid scheme
where the ej; are equal to the signs of the correlations
between Y; and the Y;’s. The inner weights are equal
to the correlation between Y; and Y; when the factorial
scheme is considered. The inner weights in a path weight-
ing scheme are (a) equal to the regression coefficients of
Y; in the multiple regression of Y on all the Y; related to
the predecessor of Yj, or (b) are equal to the correlation
between the successor of Y; and Y.

Once the auxiliary latent variables are estimated, the
weights w;;, are recomputed. Recall that, in the itera-
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tive process, these weights are used to estimate all latent
variable scores as a linear combination of their own indi-
cators. The procedure considers two ways of recomputing
the outer weights, depending on the reflective or forma-
tive nature of the outer models: mode A and mode B.
Usually, mode A is considered for recomputing the outer
weights when outer models are reflective, and mode B is
considered for recomputing the outer weights when outer
models are formative. However, this rule is not manda-
tory. Depending on models, data characteristics and also
the researcher’s discretion, one mode or another will be
more appropriate for a particular case. For mode A, the
wjy, is the regression coefficient of Z; in the simple re-
gression of x5 on the inner estimation of Z;:

wijn = cov(Tjn, Z;) (6)

For mode B, the vector w; of weights w;y, is the vector of
the regression coefficient in the multiple regression of Z;
on the manifest variables (x5, — ) related to the same
latent variable Z;:

wj = (X;X;) 7 X;Z; (7)
The first stage is iterated until convergence.

The second stage. Once the algorithm converges, the
latent variable scores estimated in stage 1 are used to es-
timate the inner and outer relationships by ordinary least
squares regression without location parameters. If reflec-
tive blocks of variables are modeled, simple regression is
used to estimate loadings (Equation 2). If formative
blocks of variables are modeled, weights are estimated by
ordinary multiple regression (Equation 3).

The third stage. The third stage focus on estimation
of the location parameters, and the values of ;5o and
Bjo (Equation 1).

3 Monte Carlo Simulation Study

A Monte Carlo simulation study was designed to ana-
lyze the performance of PLS path modeling with mode
C [12, 10]. The underlying population model considered
a simple structure with three formative exogenous con-
structs and one reflective endogenous latent variable (Fig-
ure 2). Models with two, four, six and eight indicators
per construct, and four different samples sizes (50, 100,
250, 500) were studied. Five hundred random data sets
were generated for each of the 4 x 4 cells of the two-factor
design. PLS path modeling with centroid scheme —as de-
scribed in [15]- and bootstrapping were performed in R-
project [14]. Five hundred replications (t) were made for
each cell in the design. Results are provided in terms
of the mean bias (accuracy, %Zle E[0;] — 0) and mean

relative bias (MRB= 100 x %Zle 9_‘3[97‘]7 [7]).

The data were generated from a component-based model.
We began generating standardized manifest variables x;j,
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. Outer model

Inner model

Figure 2: Inner and outer models of the simulated setups;
outer models consider two, four, six, and eight indicators
per construct.

for each formative outer model as independent normal
data. Once the manifest variables were generated, we
computed the exogenous constructs &; and the endoge-
nous latent variable 7, so that the variance of the un-
observable variables is one. The generated exogenous
constructs are not collinear. The endogenous latent vari-
able was calculated as linear combination of the exoge-
nous constructs plus a disturbance term. Disturbance
terms were computed as random normal data with a zero
mean and the corresponding standard deviation. They
were distributed independently of unobservable variables.
Standardized observed variables y; of reflective measure-
ment models were generated as independent normal data.
Errors of the reflective relationships were computed as
random normal data with a zero mean and the corre-
sponding standard deviation; they were also uncorrelated
with the latent variable. To set the true population pa-
rameters for the models, we took into account different
combinations of permissible values so as to see whether
they are recovered by the PLS path modeling algorithm.
Table 1 shows the true population values of weights, path
coefficients and loadings. We consider large values for all
the true loadings, at least 0.7 in the case of two manifest
variables per construct. This ensures the unidimensional-
ity of the block of variables and it satisfies the condition
imposed by the PLS path modeling algorithm.

4 Results

Some results are reported here. Figure 3 shows the mean
relative bias of weights and loadings. The empirical re-
sults are in line with the theoretical PLS framework [8],
and the true weights are overestimated by the PLS path
modeling algorithm (Figure 3(a)). This confirms that
PLS estimates are biased. Increasing the sample size,
the bias decreases, and for N=500, PLS almost exactly
recovers all the population values (small, moderate and
large values). The largest MRBs are exhibited for models
with the smallest sample sizes (N=>50). In addition, the
variability and mean square errors decrease by increas-
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Table 1: Vector of true population values for weights,
path coefficients and loadings; cases for two, four, six
and eight indicators in each outer model.

MVs Coefficient True Values
2 Weights (0.8,0.5)
(0.4,0.8)
(0.1,0.9)
Path Coefficients (0.5,0.4,0.6)*
Loadings (0.7,0.8)
4 Weights (0.2,0.3,0.5,0.7)
(0.2,0.4,0.6,0.5)
(0.3,0.5,0.7,0.2)
Path Coefficients (0.5,0.4,0.6)*
Loadings (0.6,0.7,0.8,0.9)
6 Weights (0.5,0.3,0.4,0.3,0.5,0.1)
(0.2,0.4,0.6,0.4,0.2,0.3)
(0.3,0.6,0.2,0.3,0.4,0.2)
Path Coefficients (0.5,0.4,0.6)*
Loadings (0.6,0.7,0.8,0.9,0.6,0.7)
8 Weights (0.3,0.3,0.4,0.3,0.4,0.3,0.2,0.3)"
(0.3,0.3,0.4,0.4,0.2,0.3,0.4,0.2)"
(0.4,0.5,0.4,0.3,0.2,0.1,0.3,0.2)"
Path Coefficients (0.5,0.4,0.6)
Loadings (0.6,0.7,0.8,0.9,0.6,0.7,0.8,0.9)
aFor N=50 the true path coefficient vector was
(0.5,0.4,0.5).
PFor  N=50 and N=100 the true weight
vectors were (0.3,0.1,0.4,0.3,0.4,0.3,0.2,0.2),
(0.3,0.1,0.4,0.4,0.2,0.3,0.4,0.1), and

(0.2,0.4,0.4,0.3,0.2,0.1,0.3,0.2).

ing the sample size or increasing the number of manifest
variables in all the simulated cases.

Simulations performed by [6] for PLS models with re-
flective relationships showed that, by themselves, neither
the number of indicators nor the sample size substan-
tively improve the quality of the estimates. Rather, it is
necessary to increase both factors at the same time for
an improvement in the quality of the estimates. Here,
the simulations for PLS models with formative blocks of
variables render the same aforementioned result. So, PLS
path modeling is consistent and consistent at large. Nev-
ertheless —and recalling that PLS algorithm computes the
latent variables as an exact linear combination of the ob-
served variables— the results suggest that estimates will
improve by increasing the sample size more than increas-
ing the number of observable variables, depending on
the correlations between manifest variables. So, the re-
searcher may suspect the type of relationship that she
expects to find.

As can be seen in Figure 3(b), the estimates of loadings
are very close to the true values in all cases, regardless
of the sample sizes and number of manifest variables per
construct. PLS path modeling overestimates the popula-
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Case C - Weight = 0.5 (500 runs)
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Figure 3: Mean relative bias of a weight and a loading.
Highlighting the influence of the sample size and the num-
ber of indicators per construct.

tion values. Moreover, according to the results, a higher
number of manifest variables seems to be more important
than a higher sample size for decreasing the bias of the
estimates in reflective outer models. This is in contrast
with the formative relationships and coincides with the
results found by other researchers [6]. This is clearly seen
in Figure 3(b) where the mean relative bias for a loading
of 0.7 strongly decreases when the number of indicators
increases. So, this confirms that PLS estimates are con-
sistent at large [6, 18].

Results for estimates of inner relationships are quite con-
clusive. Figure 4 allows us to see how an increase in both
the number of manifest variables and the sample size re-
duces the mean bias of path coefficients for all assumed
true values. The algorithm underestimates the true path
coefficients in all the analyzed cases. As the sample size
increases, the estimates increasingly approach the true
values and the biases decrease.

In accordance with expectations, when the models con-
sider only two indicators, the mean bias is the largest and
proves to be quite the same when sample size increases.
The MRB ranges from 18% (N=50) to 15% (N=500). For
models with four, six and eight indicators, the MRB de-
creases when sample size increases. Increasing the num-
ber of indicators per latent variable, it yields closer esti-
mates to the true values; but this factor tends to have less
influence on the quality of the estimates than the sample
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Figure 4: Mean bias of path coefficients. Highlighting the
influence of the sample size and the number of indicators.

size does.

Summing up, in all analyzed cases, the results obtained
are better when each outer model considers more mani-
fest variables per construct. However, it is worth noting
that the estimates are shown to be quite accurate and
precise when the measurement models include only two
indicators per construct. This suggests that PLS path
modeling may be a robust alternative when estimating
structural equation models with formative relationships
and few indicators per construct.

5 Conclusions

For the studied model, the findings suggest that PLS path
modeling offers a way to build “proper indices” for unob-
servable variables and to estimate the relationships be-
tween them. The procedure shows a tendency to over-
estimate outer relationships and underestimate inner re-
lationships. It is worth noting that the estimates are
shown to be robust when the measurement models in-
clude only two indicators per construct. It is true that
when the number of observed variables and sample size
increase, the quality of the PLS path modeling estimates
increases. But when few indicators and a small sample
size are considered, we can obtain acceptable estimates
of the parameters. [16] have noted the same behavior in
a reflective block of variables with two indicators. Fi-
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nally, we think that the model simulated here represents
a number of models that can be studied in real-world
applications: those in which formative exogenous outer
models are modeled using PLLS Mode B and reflective en-
dogenous latent variables are modeled using PLS Mode
A. That is, PLS Mode C, in terms of Wold’s approach.
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