
 
 

 

 
Abstract— In the paper, we investigate the efficiency of 

an algorithm for the choice of variables in cluster analysis built 
on the entropy approach (Dash & Liu, 2000). The assessment of 
this algorithm is carried out on synthetic data sets in the form of 
the mixtures of normal distributions. It turns out that the 
method is not working so well as the Authors of the entropy 
based approach suggested. The method fails in presence of 
correlation between masking variables. 
 

Index Terms— cluster analysis, entropy, variable choice.  
 

I. INTRODUCTION 

It is widely acknowledged that not all variables 
characterising data set observations contribute the same 
weight to the data set cluster structure. Some are more 
important than other (true variables), some are less important 
and some may be an obstacle (masking variables) in detecting 
the data set cluster structure. In recent years there has been an 
offspring of methods designed to choose the best subset of 
variables describing the data set cluster structure. There are 
about a dozen different approaches to the task. Steinley and 
Brusco (2008) examined eight methods in a broad empirical 
experiment. The conlcusions which follow are rather 
negative to nearly all model based methods as the best 
methods turned out to be non-model approaches i.e. VS-KM 
method by Brusco and Cradit (2001), relative clusterability 
weighting with VAF selection by Steinley and Brusco (2007) 
and HINoV by Carmone et al. (1999). Of the three model 
based methods only the feature saliency method by Law et al. 
(2004) did relatively well. There are other methods which 
one could apply to the same task and which were not 
considered in this experiment e.g. the entropy based method 
by Dash and Liu (2000). This approach can be used to 
construct a number of algorithms to choose variables. The 
Authors suggest two algorithms. The first one is to calculate 
the entropy of all sets consisting of all variables excluding 
one. The variables representing these sets which have higher 
entropy are more likely to be true variables. The second 
algorithm is a wrapper approach and consists in running a 
k-means algorithm to group the data for all possible subsets 
of entropy-ranked variables and to assess the grouping by 
means of a criterion. The subject of this article is to 
investigate the efficiency of both algorithms. 
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II. ENTROPY BASED METHODS 

The entropy of the set of observations  nxx ,...,1  is defined 

as (see Dash & Liu , 2000) 
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The higher the entropy the more uniform the distribution of 
variables, the more distinct data set cluster structure the lower 
the entropy. If there is a distinct cluster structure the distances 
between two points are either big or small  –  the smaller the 
number of medium size distances, although it is dependent on 
the very structure. Let us assume that the two point distances 
have been normalized separately on each variable by means 
of dividing the distance by the maximum distance for a given 
variable. The eentropy of two observations being at distance  
d  from each other can be approximated in the following way 

     ddddxxE  1log1log, 21             (2) 

so that the maximum value of 1  the entropy would assume 
for mean distance i.e.   d=0.5 , while the minimum value of 0 
the entropy would assume for the smallest possible distance 
i.e.   d=0 and for the biggest possible distance i.e.  d=1. Thus, 
the entropy of the whole data set is equal to 
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where the summation is over all pairs of data set 
observations. Subsequantly, we switch from distances  
 21 , xxd   between observations to similarities between 

observations  21 , xxS  assuming values from interval   1,0   

by means of formula 
    2121 ,exp, xxdxxS   ,                       (4) 

where    is such that the arithmetic mean of all pairwise 
distances would correspond to similarity 0.5  i.e.  

 d exp5.0 .  Switching from distances to similarities 

results in entropy being low if similarity is either high or low 
i.e. close to  0 or 1. If similarity is of medium value i.e. in the 
neighbourhood of  0.5  the entropy is high. Thus, the entropy 
of the whole data set will be given by the formula
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The first algorithm we want to investigate consists in 
comparing all entropies corresponding to all variables apart 
from one i.e.  

   VvvEvE iii ,,,,,1 11                           (6) 

For example, if     12 vEvE    it suggests that variable  2v   

is more important to data set cluster structure than variable  

1v .  Calculating all  V  entropies according to formula 6 we 

can arrange their sequence in nondecreasing order. The only 
thing that remains to be settled is to decide where to divide 
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this sequence into two groups representing true and masking 
variables. Instead of the greatest jump criterion (used by 
some researchers, e.g Steinley & Brusco, 2008) we applied 
the k-means grouping of variables (for  k=2 ) with starting 
points being two extreme entropies. The class of variables 
assigned to the lowest entropy will be discarded as masking 
variables, while the class corresponding to the highest 
entropy will represent true variables.  

The sequence of ranked variables determines to some 
extent the performance of the second algorithm proposed by 
the Authors which consists in running a grouping method 
based only on  m  variables counting from the beginning of 
the sequence. For each grouping we compute the value of a 

criterion based on  BWtr 1  , where   T
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is the between cluster variance matrix and 
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 is the within cluster variance 

matrix. The trace has the following interpretation: the higher 
its value the more distinct are the data set clusters. The 
number of variables with the highest value of the criterion is 
considered as the set of true variables. The grouping method 
originally used was the k-means grouping.  

 
III.  SIMULATION EXPERIMENT 

In order to assess comparatively the entropy based 
algorithms with other existing methods we applied similar 
experiment pattern to the one used by Steinley and Brusco 
(2008) with respect to the number of variables (true and 
masking), overlap size, type of distributions, number of 
clusters etc.. The pattern was even broader with respect to the 
number of clusters considered as we included sets with 3 
clusters.  

We generated several thousands data sets, each consisting 
of 200 data items which constituted a couple of clusters  
(each cluster generated from a normal distribution) differing 
with respect to the following factors. 
 The first factor, the number of clusters in the data set was 
examined at four levels –  3, 4, 6 and 8 clusters. 
 The second factor, number of items in clusters was 
examined at three levels: (a) an equal number of objects in 
each cluster; (b)  10% of objects and (c) 60% of objects in 
one cluster and the remaining objects equally divided across 
the remaining clusters. 
 The third factor, the number of true variables was tested at 
three levels – 2, 4 and 6. 
 The fourth factor, the probability of overlap between 
clusters on each true variable was tested at five levels – 0, 0.1, 
0.2, 0.3, 0.4. The overlap was of the “chain” type (see 
Steinley and Henson, 2005) and so, on each dimension, there 
were  k-1 pairs of overlapping clusters (k – number of 
clusters).  
 The fifth factor, the degree of within-cluster correlation 
had two variants: (a) the covariance matrix for each cluster 
was the identity matrix ; (b) each cluster had the same 
covariance matrix with ones on the diagonal and the 
off-diagonal elements drawn from a continuous distribution 
on the interval  [0.3; 0.8]. 

The sixth factor, the number of masking variables, was 
tested at three levels – 2, 4 and 6. 
 The seventh factor, the distribution of the masking 
variables was tested at five levels: (a) all masking variables 

were independently generated from a skewed distribution 
(the gamma with one degree for the numerator and 
denominator); (b) all masking variables were independently 
generated from the normal distribution with zero mean and 
identity covariance matrix; (c) all masking variables were 
independently generated from the normal distribution with 
zero mean and covariance matrix with ones on the diagonal 
and 0.25 off the diagonal; (d) all masking variables were 
independently generated from the normal distribution with 
zero mean and covariance matrix with ones on the diagonal 
and 0.5 off the diagonal; (e) all masking variables were 
independently generated from the normal distribution with 
zero mean and covariance matrix with ones on the diagonal 
and 0.75 off the diagonal. In addition, every pattern was 
repeated 2 times which gave 10800 data sets. 
 To assess the method we used two criteria (see: Steinley 
and Brusco 2008, p. 135): 
Recall: The number of relevant variables in the chosen subset 
of variables divided by the total number of relevant variables. 
Precision: The number of relevant variables in the chosen 
subset of variables divided by the total number of variables 
selected. 
 Recall and precision were computed for every data set and, 
subsequently, the arithmetic mean of the two measures was 
computed from all data sets. 

IV. RESULTS AND CONCLUSIONS 

The first algorithm performed quite well in all cases apart 
from cases c), d), and e) of the masking variables distribution 
(see Table 1). In cases a) and b) the precision and recall 
ranged from  0.75 to 0.92 which is a good performance. 
However, in all cases in which masking variables were 
correlated the method performed very badly. In case c) with 
very small amount of correlation i.e. 0.25,  the precision and 

 
Table 1   Precision and racall for different types of the 
masking distribution. 

Type of 
masking 

distribution 

a b c d e 

Precision 0.92 0.83 0.63 0.52 0.45 

Recall 0.86 0.75 0.66 0.55 0.44 

Source: own calculations. 

recall were around 0.65,  in cases d) around 0.54 an in case e) 
hardly 0.45. It is also very important to point out that in these 
3 cases the quality of ranking of the entropies was in total 
mass. If by the proper succession of ranking we denote every 
possible ranking in which all true variables come first (in 
arbitrary succession) and all masking variables second (in 
arbitrary succession), it turns out that the proper ranking 
came up about 5% of all rankings. Therefore, the limited 
version of a wrapper approach based on the ranked list of 
variables i.e. the second algorithm would have to peform 
incorrectly. 
These results contradict the Dash and Liu statement that this 
method seems to be doing well in presence of correlation 
between masking variables. 
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