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Abstract—We consider the clustering problem of di-
rectional data and specifically the choice of the num-
ber of clusters. Setting this problem under the mix-
ture approach, we perform a comparative study of
different criteria. Monte Carlo simulations are per-
formed taking into account the overlap degree of clus-
ters and the size of data.
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1 Introduction

Clustering is a key form of scientific research utilized
within a variety of different scientific disciplines. Princi-
pally the classification method is used to produce g differ-
ent clusters of wide distinctions. It should be noted that
the optimum number of clusters g leading to the greatest
separation is not known a priori and must be computed
from the data, this is an heuristic problem in the classifi-
cation topic; and this paper will be mainly concerned with
this issue. In its main usage (Mainly), Clustering sup-
ports two approaches: a geometric one where the quality
of the clustering depends on the chosen distance, and a
probabilistic approach which is considered as a standard
approach [13]. The latter covers the most widely used
clustering methods. In this approach, data iare presumed
to come from a sampled mixture of g components which
are modeled by a distribution of probability. This ap-
proach can support several situations, depending on the
parameters of the model, to obtain a best description of
a heterogeneous population considering a selected model
which is in itself another problem.

The clustering problem can be resolved by mixture mod-
eling and we can, for this, consider two approaches: the
Maximum Likelihood (ML) and the Classification Maxi-
mum Likelihood (CML) approaches. The former is based
on the maximization of the Likelihood , and the latter
one is based on the maximization of the Classification (or
complete data) Likelihood. These maximizations can be
performed respectively by the EM algorithm and by the
Classification EM (CEM) [9]. The model selection prob-
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lem is to find the most appropriate and concise model to
express given data.

Here, we merely examine some criteria from a practical
point of view and in the context of the directional data
utilizing a suitable distribution for mixture of directional
data. The von MisesFisher distributions (VMF ) are de-
fined on the hypersphere S(d−1) [2] and appear adapted
in this context. We consider Mont Carlo simulations and
examine through numerical experiments on ”real data”
to see the validity of the proposed criteria for our main
goal to estimate the number of clusters in a mixture.

This paper is organized as follows. Section 2 is devoted to
describe the VMFmixture model. Section 3 begins with a
review of the ML and CML approaches and a description
of the EM and CEM algorithms. In Section 3, we review
several criteria used in the determination of the number
of clusters, and we evaluate these criteria. Finally, the
last section summarizes the main points of this paper.

Notation Along this work, we assume that the data
matrix x is a contingency table, crossing, for example, n
documents (rows) and d words (columns). In this case,
each document is represented by xi = (x1

i , · · · , xd
i ) ∈ Rd,

with ‖xi‖ = 1 (‖.‖ denotes the standard L2). Each value
xj
i corresponds to the frequency of a word j in a document

i. A clustering of n documents provides a partition z into
g classes.

2 Clustering via the von Mises-Fisher
mixture models

2.1 Finite Mixture Model

Finite mixture models underpin a variety of techniques
in major areas of statistics including cluster analysis; see
for instance [13]. With a mixture model-based approach
clustering, it is assumed that the data to be clustered
are generated by a mixture of underlying probability dis-
tributions in which each component represents a differ-
ent cluster. Given observations x = (x1, . . . ,xn), let
ϕk(xi;αk) be the density of an observation xi from the
kth component, where the αk’s are the corresponding pa-
rameters and let g be the number of components in the
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mixture. The probability density function is

f(xi; θ) =

g∑

k=1

πkϕk(xi;αk), (1)

where πk is the probability that an observation belongs
to the kth component and θ is the vector of the unknown
parameters (π1, . . . , πg;α1, . . . , αg).

Setting the clustering problem of directional data under
the mixture model approach, we assume that x is gener-
ated from a von Mises-Fisher mixture of g components.
In this case

ϕk(xi;αk) = cd(ξk) exp ξk
Tμkxi

where αk = (μk, ξk); μk is the center, ξk is the concen-

tration of the kth cluster and cd(ξ) =
ξ

d
2
−1

(2π)
d
2 I d

2
−1

(ξ)
with

I d
2
(ξ) is the modified Bessel function of the 1st type and

of order d
2 : Id(ξ) =

1
2π

∫ 2π

0
eξ cos θ cos(dθ)dθ.

Note that we can consider different parsimonious models
by imposing constraints on πk and ξk.

1. the proportions πk of clusters and the concentra-
tions ξk are supposed not equal, this model is noted
[πk, ξk],

2. the concentrations ξk are supposed equal, this model
is noted [πk, ξ],

3. the proportions πk of clusters are supposed equal,
this model is noted [π, ξk],

4. the proportions πk of clusters and the concentrations
ξk are supposed equal, this model is noted [π, ξ].

Next we focus on the general model [πk, ξk].

2.2 ML and CML approaches

The problem of clustering can be studied in the mixture
model using the ML approach. This one, by maximizing
the likelihood

L(θ) =
∏

i

g∑

k=1

πkϕk(xi;αk),

has been by far the most commonly used approach to the
fitting of mixture distribution and is appropriate to tackle
this problem. It estimates the parameters of the mixture,
and the partition of I is derived from these parameters
using the maximum a posteriori principle (MAP). Classi-
cal optimization techniques such as Newton-Raphson or
gradient methods can be used but, in mixture context,
the EM algorithm [10] has been successfully applied and
is one of the most widely used procedures.

2.2.1 EM and CEM Algorithms

The EM algorithm is a method for maximizing the log-
likelihood L(θ) iteratively, using the maximization of
the conditional expectation of the complete-data log-
likelihood given a previous current estimate θ(c) and the
observed data x. In mixture model, we take the complete-
data to be the vector (x, z) where the unobservable vec-
tor z is the label data; the complete-data log-likelihood
Lc(θ;x, z) noted also Lc(z; θ) is

Lc(z; θ) =
∑

i,k

zik log πkϕk(xi;αk) (2)

and its conditional expectation can be written

Q(θ, θ(c)) =
∑

i,k

s
(c)
ik log(πkϕk(xi;αk)

=
∑

i,k

s
(c)
ik log (πkcd(ξk)e

ξk
Tμkxi)

where s
(c)
ik = P (zik = 1|x, θ(c)) =

π
(c)

k
ϕk(xi;α

(c)

k
)∑g

k′=1
π
(c)

k′ ϕk′ (xi;α
(c)

k′ )

denotes the conditional probability, given x and θ(c),
that xi arises from the mixture component with density
ϕk(xi;αk). Each iteration of EM has two steps: an E-
step and a M-step. The (c + 1)st E-step finds the con-
ditional expectation of the complete-data log-likelihood.
Note that in the mixture case this step reduces to the

computation of the conditional density of the s
(c)
ik . The

(c+ 1)st M-step finds θ(c+1) maximizing Q(θ, θ(c)).

The characteristics of the EM algorithm are well docu-
mented. It leads in general to simple equations, has the
nice property of increasing the log-likelihood at each iter-
ation until stationarity, and in many circumstances, it de-
rives sensible parameter estimates and consequently it is
a popular tool to obtain maximum likelihood estimation.
The EM algorithm can be viewed as a soft algorithm,
and the partition can be derived from the parameters by
using the MAP.

Note that a hard version CEM [9] can be performed by
substituting Q(θ, θ(c)) by Lc(θ). The main modifications
concern therefore the conditional maximization of com-
plete data log-likelihoods w.r. to z given θ. in this con-
text, we are not treating the estimation problem but; we
are dealing with the problems of the selection of the num-
ber of components in a mixture.

2.2.2 The EM steps for a von Mises-Fisher mix-
ture model

The EM algorithm,as explained previously is used to
compute the maximum likelihood (ML) estimates of all
the parameters through the iterated application of the
estimation and maximization of Q(θ, θ(c)). Starting from
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an initial situation θ(0), an iteration (c > 0) is defined as
follows: After the Estimation step, where the current pos-

terior s
(c)
ik is computed. The Maximization step compute

the ML estimates θ(c) = (μ
(c)
k , π

(c)
k , ξ

(c)
k ), as following:

• π
(c)
k =

∑n

i=1
s
(c)

ik

n

• μ
(c)
k =

∑n

i=1
s
(c)

ik
xi∥∥∑n

i=1
s
(c)

ik
xi

∥∥

• ξ
(c)
k = A−1

d (

∥∥∑n

i=1
s
(c)

ik
xi

∥∥
π
(c)

k
×n

)

with Ad(ξ) =
I d
2
(ξ)

I d
2
−1

(ξ)

Then, a partition z = (z1, · · · , zk) of the data can be
directly derived from the ML estimates of the mixture
parameters by assigning each xi to the component which
provided the greatest posterior probability.

3 Number of components selection

Determining the number of components g can be viewed
as a model selection problem which can be solved by dif-
ferent criteria: information model selection criteria, or
by methods based on confidence interval, and empirical
criteria [8]. In the current paper, we focus on the in-
formation criteria, for they are the most important and
popular practical techniques. This consists of penaliz-
ing the model with additional parameters. These criteria
split into two terms: one for the model fit, which is data
likelihood or complete data likelihood, and one for the
model complexity.

3.1 Information criteria

Let L be the log−likelihood of observed data, Lc be the
complete data log−likelihood with the parameter θ̂ ob-
tained by the EM algorithm, υ be the number of free pa-
rameters in the mixture model and E =

∑
i,k sik log(sik)

the entropy criterion. The terms L, Lc, υ and E depend
on g. In the following, we shall focus on twelve criteria.

• Bic(g) = −2L(g) + υ lnn, proposed by Schwarz [17]
and Rissanen [16]

• Aic(g) = −2L(g) + 2υ, proposed by Akaike [1]

• Aic3(g) = −2L(g) + 3υ, proposed by Bozdogan [7]

• Aic4(g) = −2L(g) + 4υ, proposed by Bozdogan [7]

• Aicc(g) = Aic(g) + 2υ(υ+1)
n−υ−1 , proposed by Hurvich

and Tsai [12]

• Aicu(g) = Aicc(g)+n lnn/(n− υ − 1), proposed by
McQuarrie, Schwarz and Tsai [14]

• CAic(g) = −2L(g) + υ(1 + lnn), proposed by Boz-
dogan [6]

• Clc(g) = −2L(g)+2E(g), proposed by Biernacki [4]

• IclBic(g) = Bic(g) + 2E(g), proposed by Biernacki,
Celeux and Govaert [5]

• Ll(g) = −L(g)+ υ
2

∑
k ln

nπk

2 + g
2 ln

n
12 +

g(υ+1)
2 , pro-

posed by Figueiredo and Jain (2002) [11]

• Icl(g) = −2Lc(g) + υ lnn, proposed by Biernacki,
Celeux and Govaert [5]

• Awe(g) = −2Lc(g)+2υ( 32 +lnn), proposed by Ban-
field and Raftery [3]

3.2 Experimental conditions

In our experiments, we perform a study according to the
degree of overlap of clusters and the size of data.

1. The concept of cluster separation is difficult to visu-
alize easily for our model, but the degree of overlap
can be measured by the true error rate approximated
by comparing the partitions simulated with those we
obtained by applying a classification step. From our
numerical experiments, we present only 3 situations
corresponding to 3 levels of overlap degrees: clus-
ters well separated (≈ 5%), moderately separated
(≈ 15%) and poorly separated (≈ 23%).

2. We selected several sizes of data 600 × 3, 1800 × 3,
6000× 3, 6000× 50 and 6000× 50 data arising from
3-components mixture model corresponding to the
three degrees of overlap.

To evaluate the EM algorithm and the previous criteria,
many applications on simulated data was realized. For
each θ leading the degree of overlap, we generated 20
samples. For each sample and to avoid local optima in
the generated estimation process, the EM(g) algorithm
g = 2, . . . , 5 regarding the the general model [πk, ξk], is re-
peated 20 times starting from the best partition obtained
by the spherical kmeans [2] which is a CEM applied with
the model [π, ξ]. From the best solution,

1. we compute the percent of documents misclassified
by comparing the true partition and the obtained
partition with the same number of clusters,

2. we compute all criteria previously cited in function
of different values of g,

3. we count the number of times on 20 that each crite-
rion detects the original number of clusters fit, over-
estimates it over-fit or underestimates it under-fit.
In table 1 are reported all results obtained by all
criteria.
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From these experiments, the main points arising are the
following.

• The EM algorithm gives good results by comparing
the true partition and the obtained one by EM(3).

• When the clusters are well or moderately separated
Aic3, Aic4, Aicu and Bic are the more efficient for
the studied sizes.

• When the clusters are poorly separated, the quality
of these criteria increases with the size of the data n
and when n >> d.

• Moreover note that Aic3 and Aicu outperform Bic
when the number of columns increases and remain
interesting in the most situations. In fact, Bic seems
very sensitive to the dimension, it underestimates
the number of clusters.

In these first experiments, we can consider that Aic3 and
Aicu are the best criteria. Note that Aic3 is also in-
teresting for the Bernoulli mixture model for the binary
data [15]. Nevertheless, we have noted that their per-
formances decrease when we are in the high dimension.
Then we illustrate the behavior of all criteria by using
a well known set of data known as Classic3 as a real
data application. This is a set of documents from three
well separated sources. Classic3 contains 3893 documents
(vectors) with a total of 4303 features (words). The data
matrix consists of 1400 Cranfield documents from aero-
nautical system papers, 1033 from Medline documents
obtained from medical journals, and 1460 Cisi documents
obtained from information retrieval papers. Each vector
was normalized in order to be used as a unit vector. In
order to select a number of clusters in g = 2, . . . , 5, we
have computed the same criteria as previously, we ap-
plied the EM(g) algorithm regarding the general model
[πk, ξk] and we obtained the following results:

• Bic, Caic, Icl-Bic, Icl overestimate the number of
clusters and give 4 clusters.

• Aic, Aic3, Aic4, Aicc, Clc overestimate the number
of clusters and give 5 clusters.

• Aicu, Ll, Awe underestimate the number of clusters
and give 2 clusters.

4 Conclusion

Setting the clustering of directional data in the mixture
approach context, we have performed some experiments
in order to evaluate the EM algorithm and to assess the
number of clusters. Different information criteria have
been tested on different sizes of data according different
degree of overlap. We have observed that some of them
such as Aic3, Aic, Aicu and Bic are interesting. Moreover

we have noted that their performance increases on the
size of data and Aic3 and Aicu appear as the best.

In future work, it will be interesting 1) to take into ac-
count the high dimension in these criteria and 2) to tackle
simultaneously the problem of assessing of the number of
clusters combined to the choice of the parsimonious mod-
els [πk, ξ], [πk, ξ] and [π, ξ].
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Table 1: Evaluation of EM and all information criteria for the model [πk, ξk]. For each criterion, the numbers of
times on 20 indicate that a criterion detects or not the good number of clusters.

size degree EM(3) fit Bic Aic Aic3 Aic4 Aicc Aicu CAic Clc Icl −Bic Ll Icl Awe

600× 3 4.88% 5.17% under-fit 0 0 0 0 0 0 0 0 0 0 0 0
fit 20 15 19 20 15 19 20 15 20 20 20 20

over-fit 0 5 1 0 5 1 0 5 0 0 0 0

1800× 3 5.16% 4.83% under-fit 0 0 0 0 0 0 0 0 0 0 0 0
fit 20 18 19 20 18 19 20 20 20 20 20 20

over-fit 0 2 1 0 2 1 0 0 0 0 0 0

3000× 50 4.74% 6.85% under-fit 0 0 0 0 0 0 0 0 1 7 0 4
fit 20 1 20 20 1 20 20 6 19 13 20 16

over-fit 0 19 0 0 19 0 0 14 0 0 0 0

600× 3 14.63% 16.33% under-fit 0 0 0 0 0 0 0 9 16 7 7 16
fit 20 17 20 20 17 20 20 9 4 13 13 4

over-fit 0 3 0 0 3 0 0 2 0 0 0 0

1800× 3 15.10% 15.83% under-fit 0 0 0 0 0 0 0 14 18 0 2 7
fit 20 19 20 20 19 20 20 6 2 20 18 13

over-fit 0 1 0 0 1 0 0 0 0 0 0 0

3000× 50 13.68% 14.10% under-fit 0 0 0 0 0 0 0 0 3 0 0 20
fit 20 10 20 20 10 20 20 18 17 20 20 0

over-fit 0 10 0 0 10 0 0 2 0 0 0 0

600× 3 24.96% 29.17% under-fit 20 15 17 20 15 18 20 20 20 20 20 20
fit 0 3 3 0 3 2 0 0 0 0 0 0

over-fit 0 2 0 0 2 0 0 0 0 0 0 0

1800× 3 25.19% 35.94% under-fit 20 12 17 19 12 17 20 20 20 20 20 20
fit 0 8 3 1 8 3 0 0 0 0 0 0

over-fit 0 0 0 0 0 0 0 0 0 0 0 0

6000× 3 27.49% 30.95% under-fit 0 0 0 0 0 0 0 20 20 8 20 20
fit 20 20 20 20 20 20 20 0 0 12 0 0

over-fit 0 0 0 0 0 0 0 0 0 0 0 0

3000× 50 24.75% 32.26% under-fit 18 0 0 0 0 0 20 20 20 20 20 20
fit 2 8 20 20 8 20 0 0 0 0 0 0

over-fit 0 12 0 0 12 0 0 0 0 0 0 0

6000× 50 25.61% 39.17% under-fit 20 0 1 16 0 1 20 20 20 20 20 20
fit 0 11 19 4 11 19 0 0 0 0 0 0

over-fit 0 9 0 0 9 0 0 0 0 0 0 0
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