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Abstract—Ferreira and Canto e Castro [6] introduces a power
max-autoregressive process, in short pARMAX, as an alterna-
tive to heavy tailed ARMA. An extension of pARMAX was con-
sidered in Ferreira and Canto e Castro [7], by including a ran-
dom component, and hence called pRARMAX, which makes the
model more flexible to applications. It was then developed a
methodology settled on minimizing the Bayes risk in classifica-
tion theory, but only considering standard uniform random com-
ponents. We now extend this procedure to the more general Beta
distribution. We illustrate the method with an application to a
financial data series. In order to improve estimates of the ex-
ceedance probabilities of levels of interest, we use Bortot and
Tawn [2] approach and derive a threshold-dependent extremal
index which relates with the coefficient of tail dependence of Led-
ford and Tawn [8] and with the pRARMAX parameter.

Keywords: Extreme value theory, max-autoregressive models, clas-
sification theory, Bayes error

1 Introduction

The Extreme Value Theory (EVT) has been increasingly used
in areas such as finance, insurance, engineering, geophysics
and telecommunications, due to the growing interest in the
possibility of occurrence and impact of extreme events and
the need to take them into account in modeling. Initially
it was sustained in observations considered independent and
identically distributed (i.i.d.), but recently, models for ex-
treme values have been constructed under the more realis-
tic assumption of temporal dependence. Among these, sta-
tionary Markov chains are very interesting, in particular the
max-autoregressive ones due to a somewhat simple treatment
with regard to extremal properties. The MARMA (max-
autoregressive moving average) processes presented in Davis
and Resnick [4], in particular the ARMAX or MARMA(1,0)
(Alpuim [1]), and their generalizations have applications in
various phenomena, e.g., priority queues [4], accumulation of
solar energy [3] and financial series [10].

In modeling dependence, it is important to assess if there
is asymptotic tail independence (i.e., a dependence that
gradually disappears at more and more extreme levels) or
exact dependence. Ledford and Tawn [8] have proposed
a model with a new parameter, usually denoted η , that
measures the “degree” of tail dependence, known as coef-
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ficient of asymptotic tail dependence. When computing η
for the above mentioned MARMA, another class of max-
autoregressive processes arises: the power max-autoregressive
pARMAX, which includes a power parameter c
(0 < c < 1), that is related with η (Ferreira and Canto e
Castro [6]). More precisely, we have η = max(1/2,c) and
hence, as 1/2 ≤ η < 1, the process is asymptotically tail
independent with positive association. There are several
estimators for η with good properties (see, for instance [8])
and this allows us to obtain good estimates for the model
parameter c. In order to make the pARMAX process more
applicable to real data, it is considered a generalized version
by including a random factor, denoted pRARMAX. More
precisely, a sequence {Xi}i∈Z is pRARMAX, if

Xi =UiXci−1∨Zi , 0< c< 1, i ∈ Z, (1)

where {Zi}i∈Z and {Ui}i∈Z are i.i.d. r.v.’s and independent of
each other (if U = 1 we obtain pARMAX). For pRARMAX
the same connection between the power parameter c and η
holds. A sufficient condition for stationarity is to consider
innovations {Zi}i∈Z in the Fréchet max-domain of attraction,
which in turn leads to an unit extremal index, i.e., θ = 1. See
Ferreira and Canto e Castro [7] for details.

Example: Consider Z such that, FZ(x) =
1−x−1/γ

1−(B( 1cγ +p,q)/B(p,q))x−1/(cγ)1{x≥1}, where B(p,q) is the Eu-

ler Beta function, and U � Beta(p,q), p,q > 0. Then,
K(x) =

(
1 − x−1/γ)1{x≥1}, is non-degenerate stationary

distribution of Xi.

Another interesting feature of pRARMAX is that, because
of an asymptotically tail independent behavior jointly with
an unit extremal index, it presents a thinning of clusters of
extremes as the threshold increases, until exceedances occur
singly. In such cases, there is an advantage (for inferential
purposes) if θ is replaced by a pre-asymptotic extremal index
on the approximation,

P
(∨n

i=1Yi ≤ q
)
≈ P(Y1 ≤ q)nθ , (2)

for large n and q. Based on Bortot and Tawn [2] approach, we
consider a threshold-dependent extremal index,

1−θ (u)∼ (t(u))1−1/ηL(t(u)), with t(u) = (1−K(u))−1, (3)

as u→ ∞, where L is a slowly varying function. Observe that
θ (u) is a functional of the coefficient of tail dependence, η ,
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given by η = max(1/2,c), hence relates with model parame-
ter c. More precisely, approximation (3) is a consequence of
having

∑rnj=3P(X1>un,
∨ j−1
i=2 Xi≤un,Xj>un)

P(X1>un,X2>un)
→ 0 , as n→ ∞ ,

where (un)n is a real sequence such that n(1− K(un)) →
τ > 0, and (rn)n≥1 a nondecreasing integer sequence with
rn = o(n), as n→ ∞. In addition, we have that, P(

∨n
i=1Xi ≤

un)−Kn(un) = O
(
n1−1/cL (a1/cτ/n)

)
, where L is some slowly

varying function, and also, P(
∨n
i=1Xi ≤ un)−Knθ(un)(un) =

o
(
n1−1/cL (a1/cτ/n)

)
, with θ (u) ≡ θ (u,r[u]) given in (3). There-

fore, replacing the unit θ by θ (u) in approximation (2) leads
to an improvement of this latter. For details, see Ferreira and
Canto e Castro [7].

Making use of pRARMAX flexibility, a methodology for as-
sessing the adjustment of this model to real data was devel-
oped in [7]. This procedure is based on minimizing the Bayes
risk in classification theory and it had been only considered
for Ui�U(0,1). In this paper, we will show that it easily
extends to Ui�Beta(p,q), p,q > 0 (includes U(0,1)). The
method is applied to a financial series (S&P500 log-returns)
and we conclude for the goodness-of-fit of the model. We
estimate exceeding probabilities of high levels considered as
risky amounts.

2 How to fit a pRARMAX model

In the following, we present a summary of the method. For
details, see Ferreira and Canto e Castro [7]. The pRARMAX
is a suitable model for any given observed time series {Xi}i∈Z,
if Xi = max(UiXci−1,Zi), that is, each Xi either comes from the
first component or from the second component of the maxi-
mum. Considering G0 the set of Xi’s that come from the sec-
ond component (Zi), and G1 the set of Xi’s coming from the
first component (UiXci−1), we will say that the model fits if, for
the observations in G0 the assumptions considered for Z are
not rejected, and for the observations in G1, when divided by
Xci−1, the hypotheses assumed for U are not rejected, as well.
So we need to classify each observation as belonging to G0 or
G1. If Xi ≥ Xci−1, obviously Xi ∈ G0, but the case Xi < Xci−1 re-
quires a rule-making, which has four possible outcomes with
two of them being misclassifications that will be penalized.
We apply classification theory based on a Bayesian solution
that minimizes the risk of possible wrong decisions and this is
conducted in an hypothesis tests context as in Storey [9]. Ta-
ble 1 summarizes the procedure and lead us to the settlement
of the Bayes error given by

BE(Γ) = (1−λ )P(T ∈ Γ,H = 0)+ λP(T �∈ Γ,H = 1) (4)

where Γ is the significance region of the associated hypothesis
tests. None of the errors (type I or II) is fixed in advance, they
can take any value as long as BE(Γ) is minimum. Assuming
Xi|Xi<Xci−1,Hi � (1−Hi) ·F0+Hi ·F1, F0 and F1 are the d.f.’s of
the r.v.’s in G0 and in G1, respectively, with densities f0 and f1,
the significance region

Bλ =
{
t : π0 f0(t)/(π0 f0(t)+ π1 f1(t)) ≤ λ

}
, (5)

with P(H = 1) = π1 = 1− π0, minimizes the Bayes error in
(4), for each λ (0≤ λ ≤ 1). Since our decision criterion only
respects, Xi < Xci−1, we need to compute,

P(Xi ≤ x|Xi < Xci−1) =
P(Xi ≤ x,Xi < Xci−1)
P(Xi < Xci−1)

=
F1(x)+F0(x)
P(Xi < Xci−1)

, (6)

with F1(x)=P(Xi≤x,Xi<X
c
i−1,UiX

c
i−1>Zi) and F0(x)=P(Xi≤

x,Xi< X
c
i−1,UiX

c
i−1≤Zi). For each fixed λ , we determine the

significance region, Bλ , defined in (5). In the following, we
illustrate the calculations for the model pRARMAX of exam-
ple above, where now the r.v. U is Beta(p,q), p,q > 0. We
have successively,

F1(x) =

∫ 1

0

∫ x

1
P
(( z
u
) 1
c<Xn−1≤

( x
u
) 1
c
)
dFZ(z)dFU(u)

= E(U
1
γc )

[∫ x

1
z−

1
γc dFZ(z)−x−

1
cγ FZ(x)

]
,

F0(x) =

∫ 1

0

∫ x

1
P
(
z1/c < Xn−1 <

( z
u
)1/c)dFZ(z)dFU(u)

=
E
(
U1/(γc)

)
cγ

∫ x

1
z−1/(cγ) fZ(z)dz ,

f1(x) =
E(U1/(γc))

cγ x−1/(cγ)−1FZ(x)

and
f0(x) = E(U1/(γc))

cγ x−1/(cγ) fZ(x).

In what concerns, π1 = P(H = 1) = P(Xi ∈ G1|Xi < Xci−1), we
have that,

π1 =
P(UiXci−1 > Zi)
P(Xci−1 > Zi)

=

∫ 1
0

∫ ∞
1 (z/u)−1/(γc)dFZ(z)dFU(u)∫ ∞

1 z−1/(γc)dFZ(z)

= E
(
U1/(γc))) (7)

Therefore, with π0 = 1− π1, the significance region (5) is
given by,

Bλ =

{
t :

π0t−1/(cγ) fZ(t)
(π0t−1/(cγ) fZ(t)+ (1−π0)t−1/(cγ)−1FZ(t))

≤ λ
}

. (8)

Note that r.v. U in this context has distribution Beta condi-
tional on Xi =UiXci−1 and on the criterion UiX

c
i−1 > tλ , where

tλ is the critical value obtained in (8). Thus being,

P(Ui ≤ u|UiXci−1 > tλ ,Xi =UiXci−1)

=

∫ ∞

1

∫ ∞

1
P
( tλ
xc ∨

z
xc <Ui ≤ u

)
dFZ(z)dK(x)∫ ∞

1

∫ ∞

1
P
(
Ui >

tλ
xc ∨

z
xc

)
dFZ(z)dK(x)

,
(9)

where, for the numerator, and taking A= (tλ /u)1/c, we obtain,∫ ∞

A
FU(u)FZ(uxc)dK(x)−

∫ ∞

A

∫ tλ

1
FU( tλxc )dFZ(z)dK(x)

−

∫ ∞

A

∫ uxc

tλ

FU( zxc )dFZ(z)dK(x).

Since the denominator in (9) is derived from the previous ex-
pression by taking u= 1, after some algebra we have,
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P
(
Un ≤ u|UnXcn−1 > tλ ,Xn =UnXcn−1

)
=
1
I

∫ ∞

A
x−c

∫ uxc

tλ
fU(z/xc)FZ(z)dzdK(x)

where, I =
∫ ∞

t1/cλ

[∫ xc
tλ
fU(z/xc)FZ(z)dz

]
dK(x). Hence the density

function is given by,

1
I

∫ ∞

A
fU(u)FZ(uxc)dK(x)

=
u1/(cγ)+p−1(1−u)q−1

B(p,q)cγ I

∫ ∞

tλ

FZ(y)y−1/(cγ)−1dy.
(10)

Therefore, the r.v.’sUi captured by the criterion are Beta
(
p+

1
cγ , q

)
distributed. Here is a summary of the steps to fit a

pRARMAX model to a time series data:

1. Test if the given sample, X = (X1,X2, ...,Xn), is in the
Fréchet max-domain of attraction and estimate the tail
index, here denoted γX (e.g., Hill estimator);

2. Estimate parameter c of model pRARMAX through the
estimation of η which is the tail index (γT ) of T(n) =
(T (n)
1 , ...,T (n)

n−1), with T
(n)
i = min

( n+1
n+1−Ri ,

n+1
n+1−Ri+1

)
, i =

1, ...,n, where Ri is the rank of Xi among (X1, ...,Xn);

3. Based on the criterion: “if Xi > Xĉi−1 (ĉ= γ̂T , obtained in
step 2.) then Xi = Zi”, separate the innovations, Z, and
test if this sample is also in the Fréchet max-domain of
attraction;

4. Capture the observations corresponding toU , through the
criterion: “if Xi<Xĉi−1 and Xi ∈Bλ given in (8), where γ̂X
and ĉ are the estimates obtained in steps 1. and 2., respec-
tively, then,Ui = Xi/Xĉi−1”; λ must be chosen in order to
minimize the Bayes error in (4) but also allowing to cap-
ture a reasonable number of “true values” ofU (� 30);

5. Test whether the sample of r.v.’s U captured in the pre-
vious step has distribution Beta(1/(γ̂X ĉ)+ p,q) (use, for
instance, the Kolmogorov-Smirnov test).

Table 1: Possible outcomes of a classification criterion along with an inter-
pretation under an hypothesis test procedure with misclassification penalties
λ .

Xi classified in G0 Xi classified in G1
H classified as 0 H classified as 1

Xi belongs to G0
H = 0 correct decision type I error (1−λ )

Xi belongs to G1
H = 1 type II error (λ ) correct decision

2.1 An application to financial data

In financial markets often one has to decide on a big risky in-
vestment while cannot afford to have a loss larger than a cer-
tain amount. Hence, it may be of interest to know the proba-
bility that the maximum volatility exceeds that amount of risk.

We will see that a pRARMAX process with Pareto marginals
and random components, U�U(0,1), performs quite well
in modeling the volatility of S&P500 stock market index,
through the implementation of the procedure outlined above.
More precisely, we examine the square of the log-returns
Ri = logPi+1/Pi, 1 ≤ i ≤ n− 1 (“volatility” can be measured
through |Ri| or, equivalently, R2i ), where Pi denotes the index
calculated at the end of the ith trading day in the years 1957 to
1987, amounting a sample size n = 7733. The series {Ri}i
and {R2i }i are plotted in Figure 1, in which the large peak
corresponds to Monday stock market crash on the 19th Oc-
tober 1987, known as “Black Monday”. According to step
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Figure 1: Daily log-returns (left), respective squares (middle) of S&P500
stock market index and sample path of the extreme value condition test ap-
plied to the series {R2i }i, (horizontal line: critical value above which reject
X ∈ D(Gγ )γ≥0).

1., we test if the data present a heavy tail. In Figure 2 (top
left) the horizontal line corresponds to the critical value above
which we reject the extreme value condition. Hence it is not
rejected for k � 700. The sample path of Hill estimator (Fig-
ure 2 top right) shows an upward trend, whereas the moment
and maximum likelihood estimators in (bottom left and right
respectively) are much more stable: from these latter we ad-
vance the estimate, γ̂X ≈ 0.5 (value where the paths yield an
almost flat line; the argument for this value will be further
strengthened ahead). In order to obtain a data series with stan-
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Figure 2: Sample paths of Hill (left), moment (middle) and maximum like-
lihood estimators (right) for the squared log-returns R2i .

dard Pareto marginals, a robust regression was implemented
leading to a scale estimate, a = 13618.3, and a shift estimate,
b = 1.1. Thus, our analysis focuses on the transformed data,
Xi = aR2i + b, (1 ≤ i ≤ n with n = 7733). From now on we
will refer to this data set as “X”.

We test again the extreme value conditionwhich is not rejected
for 165 � k � 900 as shown in Figure 3 (top left). Consider-
ing the sample paths of Hill, moment andmaximum likelihood
estimators in Figure 3, the previous estimate, γ̂X ≈ 0.5, seems
even more plausible (note that the behavior of the Hill estima-
tor has changed completely yielding an almost flat line). To
evaluate the effect on the tail of the large peak, we have con-
sidered the data until the day immediately before and obtained
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Figure 3: Left: sample path of the extreme value condition test applied
to the transformed data X, (horizontal line: critical value above which reject
X ∈ D(Gγ )γ≥0); sample paths of Hill (middle) and moment (right) for X.

0.4� γX � 0.45.

According to step 2., we transform X into T(n) and then es-
timate parameter c through the tail index of T(n). Observ-
ing Figure 4, the estimate is about 0.85. However, due to
some stability around 0.75, we consider, ĉ= 0.85, ĉ= 0.8 and
ĉ= 0.75. The innovations Z, captured on step 3., seem also to
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Figure 4: Sample paths of Hill (left), moment (center) and maximum like-
lihood (right) estimators, of the transformed sample T(n) from X.
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Figure 5: Left: sample path of the extreme value condition test for the
innovations Z, captured from X on step 3.; sample paths of Hill (center) and
moment (right) estimators, for Z.

confirm a Fréchet max-domain of attraction (Figure 5). Car-
rying out step 4., we capture the observations corresponding
to U , for λ = 0.05, 0.1, ..., 0.5 and for the three scenarios
(ĉ = 0.85,0.8,0.75). On step 5., we apply the Kolmogorov-
Smirnov test for the distribution Beta(1/(0.5∗ ĉ) + 1,1). In
the case, ĉ = 0.85, rejection is obtained for λ ≥ 0.20 (see
Figure 6) and the choice λ = 0.15 matches with the sim-
ulation study in Ferreira and Canto e Castro [7] (with 29
observations captured). Taking ĉ = 0.8 (less catches) then
Beta(1/(0.5 ∗ 0.8) + 1,1) is rejected for λ ≥ 0.3 with the
best fit occurring for λ = 0.2, and with ĉ = 0.75 (even less
catches) only rejects Beta(1/(0.5 ∗ 0.75)+ 1,1) for λ = 0.5,
both matching once again the simulation results in Ferreira
and Canto e Castro [7].

Though pRARMAX fits to all data set, it is actually profiled
for the modeling of large values, also known as rare events. As
already mentioned, we are interested in estimating the proba-
bility that the maximum volatility exceeds a risky amount, for
which we use the approximation in (2) considering both, θ = 1
(the true value) and θ replaced by the pre-asymptotic version,
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Figure 6: Empirical and theoretical d.f.’s of the random coefficients, U ,
captured from X through step 4. (with ĉ = 0.85), for significance regions
with, λ = 0.05, ..., λ = 0.20.

θ (u) = 1−u
1
γ (1−1/c), derived from (3). Beside estimate 0.5, we

also take γ = 0.45 and γ = 0.4, so we can see the effect of the
very large peak. From Table 2, where we are considering the
risky level 0.2, the probability estimates decrease significantly
with the decrease of γ . Yet, in what respects c, a very small
decrease takes place. Hence γ is a crucial parameter. Further-
more, we can also see that the higher the γ and the c the greater
the differences in estimates.

Table 2: Estimates of the probability that the maximum volatility exceeds
0.2, based on (2), with θ = θ (u) = 1−u

1
γ (1−1/c) (first 3 lines) and with θ = 1

(last line), considering n= 10000.

γ = 0.5 γ = 0.45 γ = 0.4
c= 0.85 0.053222 0.010474 0.002881
c= 0.8 0.057372 0.015703 0.003028
c= 0.75 0.059219 0.01609 0.00308

θ = 1 0.060295 0.016281 0.003101
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