
 
 

 

 
Abstract— A simulation study is executed with respect to an 

end-of-period discount for daily perishable products. In case 
that supplied products will not be sold out by end-of-period, the 
sales floor manager sometimes sells the products in a discount 
price in order to increase the revenue of the period. The 
reference price of consumers for the products is consequently 
declined and some consumers would not purchase the products 
at a regular sales price. It is important for the manager to take 
the reference price effect into account so as to improve 
long-term profit. This paper formulates the end-of-period 
discount problem within a framework of dynamic 
programming. Optimal pricings are derived in a simulation 
study to estimate the influence of inventory distribution on the 
optimal pricings. 
 

Index Terms— dynamic programming, inventory control, 
optimal pricing, reference price effect, simulation. 
 

I. INTRODUCTION 

Packages of fresh prepared foods, such as sushi and 
sliced raw fish, are sold in retail stores nowadays in more 
countries. In case that the life of products only lasts one day 
due to deterioration of freshness, firms prepare appropriate 
amount of package products before opening with predicting 
the demand of the day, and sell them just for the day. Unsold 
products are to be disposed or reused as ingredients for other 
products. The firms hope to reduce the number of unsold 
products from both economical and ecological standpoints. 
On the days when the firms overestimate the demand, they 
sometimes discount the sales price of products or distribute 
coupons in order to stimulate consumer spending. 

Such actions can improve profit of the day; they increase 
the revenue and decrease disposal cost. At the same time, 
however, the actions drop consumers' reference prices with 
which consumers judge if a sale price is a gain or a loss for 
them. The declined reference price reduces the future 
demand for the products sold at a regular price, which is 
called the reference price effect on demand, and it might 
decrease revenue in the long run. From a long-term business 
perspective, firms should discount sales prices advisedly. 
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The reference price is well-known as the reference point 
in the prospect theory proposed by Kahneman and Tversky 
[1]. There are some researches studying promotional 
planning problems with the reference price effect to derive 
optimal pricing policies to maximize long-term revenues [2, 
3, 4]. They targeted frequently purchased commodities and 
implicitly assumed that the firm could procure enough 
products to satisfy demands. In their models, the discount 
aims to stimulate demand and not to decrease the disposals of 
unsold products. The inventory quantity of the products is 
neglected in their models. 

This paper discusses a discount pricing policy on daily 
perishable products considering reference price effects and 
inventory quantity. A firm can sell the products in a discount 
price just before the end of closing time to avoid the disposal 
of unsold products after the closing time. The firm 
determines an optimal sales price with considering inventory 
quantity, the demand for the products in the left business 
hours, and the deterioration of consumers’ reference price for 
long-term profit. The most essential factor in this study is 
taking inventory quantity into account in the model compared 
to models in past literature [2, 3, 4]. A mathematical model 
for the problem is formulated to derive an optimal pricing to 
maximize long-term profit. The optimal pricing is computed 
by a dynamic programming framework. The optimal pricing 
policies are discussed through simulation study for some 
long-term inventory distributions pattern. The simulation 
study reveals that the inventory distribution performs a 
crucial function in the optimal pricings and should not be 
neglected. 

 

II. BACKGROUNDS AND SETTINGS 

A. Single Period Model 

Consider a price-setting firm which deals in a single type 
of perishable products. The firm cannot be sold the unsold 
products in the following periods. The firm determines the 
sales price p and the inventory level q to maximize the 
expected profit on a single period. The optimums p* and q* 
can be solved within a framework of the famous newsvendor 
problem [5].  

Let D(p) = 0 – 1p +   be the stochastic demand 
function with respect to p, where 0 , 1 > 0 and  is a random 
variable with mean 0. When it holds qpD )( , the q – D(p) 
products are unsold and be disposed or reused at the unit cost 
h, where h means the disposal cost if h > 0, and the salvage 
cost if h < 0. On the other hand, if D(p) > q, the D(p) – q 
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demands are not satisfied and estimated a penalty at the 
per-unit cost s > 0. Let c be the unit procurement cost of the 
products. 

Introducing z = q – E[D(p)], so-called stocking factor, 
the optimal price p* which maximizes the expected profit 
E[(p, z)] is given by the following equation [5]: 
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where (z) is the expected amounts of shortages and p0 is the 
optimal price which maximizes the riskless expected profit 
E[(p – c)D(p)]. From (1), the optimum p* only depends on z. 
With letting p = p*(z), the expected profit E[(p*(z), z)] 
becomes just a function with respect to z, then the optimal 
stocking factor z* is derived, then so are p* and q* [5]. 

B. Multi-Period Model with Reference Price Effect 

Here, we target a finite horizon model over T multiple 
periods; period t = 1, 2, …, T. Similarly to the previous model, 
unsold products at the end of period cannot be left over the 
following periods. With the reference price effect, even 
under such a setting, the optimal prices for multiple periods 
are not equal to the price given by (1). 

The demand function comprising the reference price 
effects is modeled as follows: 

 D(p, r) = 0 – 1p + 2[r – p]+ – 3[p – r]+, (2) 

where 2, 3 > 0 and [x]+ = max(x, 0). Consumers perceive a 
sold product as a gain if the sales price p is less than their 
reference prices r, and the demand increases by 2(r – p) from 
the fundamental demand D(p). If the sales price p is above the 
reference price r, the demand decreases by 3(p – r). When it 
holds 2 < 3, 2 = 3, and 2 > 3, the consumers are 
respectively referred as to loss-averse, loss-neutral, and 
loss-seeking [1]. 

The consumers update their reference prices depending 
on the sales price. It is assumed that the reference price rt on 
period t + 1 is determined by the reference price rt and the 
sales price pt on the previous period: 

 rt + 1 = rt + (1 – ) pt. (3) 

The exponential smoothing represented by (3) is the 
most commonly adopted in the literature [2, 3, 4]. The 
smoothing parameter   implies how strongly the reference 
price is affected by past prices, where 10  . The 
consumers with lower   have a short-term memory, and 
they are strongly influenced by recent sales prices.  

In this case, the objective is to find the optimal prices 
{p1

*, p2
*, …, pT

*} and the optimal inventory levels {q1
*, q2

*, 
…, qT

*} to maximize the current value of the profit over T 
periods. The problem is more complex than that in a single 
period case even though D(p, r) is deterministic as shown in 
(2). It can be generally solved within a dynamic 
programming framework. 

C. Promotion Planning Problems 

The past studies with considering reference price [2, 3, 4] 
are aimed to promotion planning problems, where a firm 
sometimes sells the target products at discount prices as a 
promotion to maximize a long-term profit. They assume that 
their target products are frequently purchased commodities 
and their supply is abundance. As the result, they consider 

neither the possibility of out of stock nor that of disposal due 
to the expiration of the products. The profit in their studies is 
simply 

 (p, r) = pD(p, r). (4) 

Popescu and Wu [4] have derived some qualitative 
results regarding the optimal pricing trajectory for the 
promotion planning problem. Their most important result is 
that the optimal pricing path converges to a unique constant 
price, which can be obtained from a closed-form equation, if 
consumers are loss neutral or loss aversion. The closed-form 
equation cannot be applied to our problem which considers 
the inventory quantity.  

 

III. TARGET PROBLEM 

A. Problem Descriptions 

In this study, we treat a single type of products over T 
multiple periods. Each period is divided into two terms: term 
1 and term 2. Term 2 and term 1 represent the end-of-period 
and the other, respectively. The firm starts to sell the product 
at the beginning of term 1 at the regular price pH. Let qt be the 
left stocking quantity at the beginning of term 2 in period t. In 
general, the inventory quantity qt varies stochastically 
because of the deviation between the predicted and observed 
demands in term 1, and we consider several cases regarding 
the inventory distribution {qt} in the next section. 

At the beginning of term 2, the floor sales manager 
determines the sales price pt within an available price range 
p= [pL, pH]. Assume D(p,r) is given by (2) in common over 
T periods and nonnegative for any p and r within p.  

The objective in this study is to derive an optimal price 
{p1

*, p2
*, …, pT

*} in term 2 to maximize the present value of 
total profit over T periods, with considering the forecasted 
inventory distribution {q1, q2, …, qT} and the demand D(p, r) 
in term 2. Note that {q1, q2, …, qT} are not design variables 
but given in this study. Furthermore, the determination of the 
regular price pH and the initial inventory level at the 
beginning of term 1 is excluded from this model, unlike the 
single period model in the previous section. 

Consumers are assumed to be homogeneous and have a 
common reference price rt in period t. It is postulate that 
consumers are segmented by their visiting terms: within term 
1 and term 2. The assumption means that the pricing in term 2 
does not affect the consumers in term 1. 

B. Formulation 

Suppose that there are q unsold products at the beginning 
of term 2 in a certain period. If the products are sold at price p 
in term 2 for consumers with reference price r, the firm sells 
min[D(p, r), q] products, disposes [q – D(p, r)]+ products, and 
loses [D(p, r) – q]+ consumers. The profit (p, q, r) in term 2 
in the period is given by 

 (p, q, r) = min[D(p, r), q]p – cq 
 – h [q – D(p, r)]+ – s[D(p, r) – q]+   (5) 

Let r1 be the consumers’ reference price on period 1, the 
problem to maximize the present value of profit in term 2 
over T periods, named problem M, can be written as follows: 
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111 ,,max, q , (6) 

subject to (3) for t = 1, 2, …, T – 1. The value function  
V1(q1, r1) implies the maximum present value over T periods 
with inventories q1 = {q1, q2, …, qT} and initial reference 
price r1. 

Problem M can be transformed as follows and its 
solution is derived by dynamic programming. 

    tttt
p

ttt rqpWrV
pt

,,max,


q , (7) 

Wt(pt, qt, rt) = (pt, qt, rt) + V(qt+1, rt + (1 – )pt), (8) 

 VT(· ,·) = 0, (9) 

where qt = {qt, qt+1, …, qT}, t = 1, 2, …, T. The value of the 
reference price rt in Vt(qt, rt) is discretized in price range p 
to execute the dynamic programming since the value of rt  is a 
real number. 

Define optimal pricing pt
* and the corresponding 

reference price rt
* by the following equations: 

    tttt
p

tttt rpWrpp
pt

,,maxarg,** qq


 , (10) 

  rt
* = rt–1

* + (1 – ) pt–1
*, (11) 

 r1
* = r1. (12) 

To avoid the ambiguity of multiple solutions, arg max x f(x) 
refers to the largest value of x which maximizes the function f. 
The vector {p1

*, p2
*, ..., pT

*} is named optimal pricing path. 
  

IV. SIMULATION STUDIES 

A. Simulation Settings 

This section discusses the optimal pricing policy through 
the computed optimums in simulation study under several 
inventory distributions. Three types of so-called “optimal” 
pricings are compared in this section. The first is the exact 
optimal pricing pt

*, obtained by (10). The second is a myopic 
optimal pricing pt

M* and the last is the single period 
maximizing pricing tp~ . 

The myopic optimal pricing pt
M* is the optimal pricing 

for Problem M with T = 1 and is obtained by 

    tt
p

tt
M
t rqprqp

p

,,maxarg,* 


. (13) 

The myopic optimal pricing takes the reference price effect 
into account, but ignores the influence of the determined 
price pt

M* on the reference prices rt+1 in the future. 
The single period maximizing pricing tp~  does not 

consider even the reference price effect and is computed by 

    pqpqp t
p

tt
p

,,maxarg~ 


. (14) 

The single period maximizing pricing depends only on the 
inventory qt and becomes constant for any t for a constant qt. 

The demand in this experiment has the following 
fashion: 

 D(p, r) = 0 – 1p + 2[r – p]+ / r – 3[p – r]+ / r. (15) 

The reference price effect in (15) signifies a relative 
difference perception, motivated by the Weber-Fechner law 

in psychophysics. According to some experiments with 
respect to the prospect theory [6], the consumers are assumed 
to be loss aversion. Concretely, we set the parameters 2 = 75 
and 3 = 150. The regular price pH of the products is 500 and 
the minimum available price pL is 200. The initial reference 
price r1 is assumed to be equal to the regular price, 500. The 
other parameters are set as follows: 0 = 100, 1 = 0.1,  
 = 0.95, c = 300, h = 50, and s = 0. 

The exact optimal price pt
* and its competitors pt

M* and 

tp~  are computed in terms of 0.5. 

B. Case 1: Constant Inventories 

This subsection discusses the optimal pricings under the 
situation where inventories {qt} are constant for any t. The 
firm should sell the products at the regular price pH when it 
holds 50),(  HHt ppDq . We hence consider the cases qt is 
constantly equal to 55, 60, 65, and 70. The parameter T is set 
to 100 or 150 so that the optimal prices substantially 
converge to constant values.  

The trajectories of the three types of optimums are 
illustrated in Fig. 1 where qt = 60,  = 0.4, and T = 100. The 
myopic price pt

M* decreases monotonously, then converges to 
a constant price 400. The single period maximizing price tp~  
has a constant value 475 since it depends on the constant qt 
alone. The exact optimal price exhibits analogous behavior to 
the myopic price till t = 70, namely decreases and converges 
to a certain level pt

* = 467, then decreases till the end of 
planning periods t = 100. The downward price is occurred 
due to the limitation of the planning period. A discount price 
has less influence on future profit toward the end of the 
planning periods. The firm therefore should reduce the sales 
price to emphasize short-term profit.  

Owing to the discount factor , if the length of planning 
periods T is sufficiently great, the final periods can be 
ignored. We hence focus on the temporary convergence 
value before the final periods, denoted by p*. Let pM* and p~  
be the convergence value of the myopic pricing and the 
constant single period maximizing pricing. Table 1 
summarizes the three types of prices in several settings of qt 
and . For all cases in Table 1, it holds 
 

 pM*   p*   p~ . (16) 

Equation (16) can be interpreted as follows. The myopic 
policy settles a low price to stimulate demand since it 
neglects the disadvantage caused by declined consumer’s 

300 

350 

400 

450 

500 

0 10 20 30 40 50 60 70 80 90

Period t

myopic  single max.  exact  

Figure 1.  Optimal prices in Case 1 (qt = 60 and  = 0.4). 
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reference price. The single period maximizing policy sets a 
high price without taking reference effect on demand into 
account. Popescu and Wu [4] proved that (16) holds in their 
model where inventory quantity is ignored. Since our model 
is an extension of theirs, we expect (16) also holds in our 
model. 

Table 2 represents the ratios of V1(q1, r1) in (6), the 
current value of total profit, by the three types of optimal 
pricings, where V*, VM*, and V

~
are respectively V1(q1, r1) by 

the exact optimal pricing, by the myopic pricings, and by the 
one-day profit-maximizing pricings. The current values VM* 
and V

~
relatively deteriorate when the constant inventory 

level qt increases. It is noticeable that the myopic pricings lost 
a profound profit by the discarded discounts in case of grater 
.  

C. Case 2: Periodic Inventories 

This subsection discusses the optimal pricings under the 
situation where inventory quantity yt varies periodically. 
Here, we consider the cases where the length of inventory 
cycle is 2, such as qt = qL, qH, qL, qH, … (qL < qH), and the 
average between qL and qH is equal to D(pH, pH) = 50. Figure 
2 and Figure 3 illustrate the fluctuation of the optimal 
pricings in the cases where (qL, qH) = (40, 60) and (qL, qH) = 
(30, 70), respectively,  = 0.4, and T = 100. The optimal 
pricings synchronize according to the periodic variation of qt. 

The single period maximizing pricing tp~  is identical to 
that in Case 1 for the same value of qt; tp~  = 475 if qt = qH 
(=60, 70) and tp~  = 500 otherwise. On the other hand, pt

* and 
pt

M* do not correspond with those in Case 1. Analogous to the 
previous subsection, let p* and pM* be respectively the 
convergence prices of pt

* and pt
M* for qt = qL and qt = qH. 

Additionally, let r* and rM* be the reference prices according 
to p* and pM*, respectively. Tables 3 and 4 compare the above 
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Figure 2.  Optimal prices in Case 2 (qL = 40, qH = 60,  = 0.4). 
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Figure 3.  Optimal prices in Case 2 (qL = 30, qH = 70,  = 0.4). 

 
 

Table 3.  Exact Optimum p* in Case 1 and Case 2. 
 

 Case 1 Case 2 

qt 40 60 40 60 

p* 500.0 467.0 499.0 454.5

r* 500.0 467.0 467.5 486.5

D(p*, r*) 50.0 53.3 40.0 59.5 

(p*, qt, r
*) 8,000 6,556 7,956 9,009

 Case 1 Case 2 

qt 30 70 30 70 

p* 500.0 467.0 500.0 417.0

r* 500.0 467.0 441.0 476.5

D(p*, r*) 50.0 53.3 29.9 67.7 

(p*, qt, r
*) 6,000 6,556 5,963 7,100

 
Table 4.  Myopic Optimum pM* in Case 1 and Case 2. 

 

 Case 1 Case 2 

qt 40 60 40 60 

pM* 500.0 400.5 499.0 454.5

rM* 500.0 400.5 467.5 486.5

D(pM*, rM*) 50.0 60.0 40.0 59.5 

(pM*, qt, r
M*) 8,000 6,008 7,956 9,009

 Case 1 Case 2 

qt 30 70 30 70 

pM* 500.0 300.5 485.0 400.0

rM* 500.0 300.5 424.5 461.0

D(pM*, rM*) 50.0 70.0 30.1 69.9 

(pM*, qt, r
M*) 6,000 18 5,550 6,966

 
 

Table 1.  Convergence Prices in Case 1.  
 

qt  pM* p* p~  

55 0.4 450.5 467.0 475.0 
 0.6 451.0 464.5 475.0 
 0.8 452.0 457.5 475.0 

60 0.4 400.5 467.0 475.0 
 0.6 401.5 464.5 475.0 
 0.8 402.5 455.0 475.0 

65 0.4 350.5 467.0 475.0 
 0.6 351.5 464.5 475.0 
 0.8 532.5 455.0 475.0 

70 0.4 300.5 467.0 475.0 
 0.6 302.0 464.5 475.0 
 0.8 303.0 455.0 475.0 

 
Table 2.  Ratios between Optimal Profits in Case 1. 

 

qt   VM* / V* V
~  / V* 

55 0.4 99.55% 99.51% 
 0.6 99.67% 99.42% 
 0.8 98.64% 98.78% 

60 0.4 93.78% 99.19% 
 0.6 94.85% 98.91% 
 0.8 96.85% 97.55% 

65 0.4 74.73% 98.61% 
 0.6 78.16% 98.12% 
 0.8 85.22% 95.96% 

70 0.4 20.82% 97.55% 
 0.6 31.01% 96.72% 
 0.8 52.46% 93.27% 
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values and the corresponding demands and profits in Case 1 
and Case 2. 

Table 3 shows that the exact optimal price p* in Case 2 is 
smaller than that in Case 1. In the case of qt = 70, for instance, 
p* = 467 in Case 1 and p* = 417 in Case 2. The inventory 
quantity is 70 for every period in Case 1, whereas it falls 
down to 30 the next period in Case 2. The firm can sell 
products at a high price in the period with qt = 30, and 
consequently consumers’ reference price is elevated. The 
firm can sell products at a lower price to stimulate demands in 
the period with qt = 70 in Case 2 for consumers with higher 
reference price compared with those in Case 1. 

Table 4 reveals that the myopic optimums pM* in Case 2 
have smaller fluctuation than in Case 1. For example, the 
myopic optimums are 500.0 and 300.5 in the cases of qt = 30 
and qt = 70 in Case 1, respectively. When (qL, qH) = (30, 70) 
in Case 2, pM* = 485.0 and pM* = 400.0. Since the myopic 
pricing only optimizes the sales price of the period with 
considering consumers’ reference price, the myopic optimum 
in Case 2 is inevitably higher on the period with qL than that 
in Case 1 with a constant qL, and lower on the period with qH 
than that in Case 1 with a constant qH. 

As shown in Table 2 for Case 1, we have estimated the 
ratio of the current value of total profits by the three types of 
optimal pricings in Case 2, which are summarized in Table 5. 
The current values by both the myopic policy and single 
period maximizing policy are deteriorated when the 
difference of inventory fluctuation, namely qH – qL, increases. 
It is also noticeable that the myopic policy is an appropriate 
approximation of the exact policy for the situation with small 
fluctuation of inventory level and with a great . 

D. Case 3: Normal Distributed Inventories 

This subsection discusses the optimal pricings under the 
situation where inventories qt follows a normal distribution 
with mean D(pH, pH) = 50. The standard deviation  of the 
distribution has five levels 3, 6, 9, 12, and 15. A thousand of 
inventory patterns are randomly generated for each . The 

length of planning period T is set to 100. The three types of 
optimal prices and their corresponding values of the 
objective function are computed for the generated inventory 
patterns. 

Table 6 indicates the results of experiments. The values 
outside and insides the brackets represents the mean and the 
standard deviation for 1,000 patterns. Both V

~
/ V* and  

VM* / V* decrease as  increases. Note that VM* / V* in Case 3 
with  = 3 are less than that in Case 2 with (qL, qH) = (40, 60), 
whose standard deviation is 10 . The result means that 
irregularity of inventory levels reduces the precision of the 
approximate optimum computed by the myopic pricing 
policy.  

 

V. CONCLUSIONS 

This paper has proposed a mathematical model for an 
optimal end-of-period discount pricing on perishable 
products without leftover. The proposed model incorporates 
not only the reference price effect but also the amount of 
inventory. The optimal pricing has been derived through 
dynamic programming and numerical experiments revealed 
that the optimal pricing substantially depends on the 
inventory distribution. For the loss-averse consumers, the 
firm should sell the products at a constant price when the 
forecasted inventories in the future are also constant. When 
the future inventories cycle periodically, the firm should vary 
the sales price periodically according to the fluctuation of 
inventory. The myopic price deteriorates compared with the 
exact optimum in case that inventory quantity varies 
randomly. The exact optimum is required for realistic 
uncertain situations.  

An algorithm to derive the exact optimum has to be 
improved in order to execute in shorter time for larger size of 
problems. Theoretical analyses with respect to the optimum 
are also necessary to find more general insights on the 
optimal pricings. The models with another manner to update 
consumer's reference price is attractive to research. 
Fredrickson and Kahneman mentioned that consumers tend 
to memorize the lower price strongly than higher price [7], 
which seems to be more practical. The optimal pricing with 
such an update mechanism will be discussed in forthcoming 
papers. 
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Table 5.  Ratios of Optimal Values in Case 2. 
 

qL qH   VM* / V* V
~  / V* 

40 60 0.4 99.16% 94.25% 
  0.8 100.00% 93.30% 

35 65 0.4 98.19% 87.48% 
  0.8 99.99% 86.81% 

30 70 0.4 96.59% 80.23% 
  0.8 99.99% 79.53% 

25 75 0.4 92.82% 71.11% 
  0.8 99.65% 71.05% 

20 80 0.4 85.87% 58.45% 
  0.8 98.60% 59.06% 

 
Table 6.  Ratios of Optimal Values in Case 3. 

 

   VM* / V* V
~  / V* 

3 0.4 98.77% (0.40%) 98.28% (0.26%) 
 0.8 97.39% (0.72%) 97.40% (0.36%) 

6 0.4 98.08% (0.69%) 96.27% (0.49%) 
 0.8 98.31% (0.85%) 95.50% (0.68%) 

9 0.4 97.16% (1.12%) 94.34% (0.75%) 
 0.8 97.57% (1.23%) 92.79% (1.04%) 

12 0.4 95.82% (1.82%) 92.36% (1.00%) 
 0.8 96.73% (1.46%) 90.18% (1.21%) 

15 0.4 93.69% (2.90%) 90.31% (1.24%) 
 0.8 95.60% (2.22%) 87.77% (1.56%) 
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