
 
 

 

  
Abstract— Engineering or manufacturing domain knowledge 

is rarely in the form required by these systems. Furthermore, we 
have to solve a lack of information, presence of incomplete and 
noisy knowledge about solved complex diagnostic system from 
reliability, optimal and predictive manufacturing point of view. 
Decision support purposes require for the knowledge provider 
to know about primary „cause-effect“ relationships but not be in 
a position to assert that other relationships are nonexistent. The 
use of maximum entropy inference in reasoning with uncertain 
information is commonly justified by an information-theoretic 
argument. This contribution deals with a possible objection to 
this information-theoretic justification, presents a probabilistic 
reasoning methodology and a maximum entropy application, 
which can estimate missing information by making some sort of 
global assumption and provide advice based on the knowledge 
available. Some diagnostic problems could be operated in a 
chaotic fashion. Achieved results showing how the fractal 
dimension and entropy describing the chaotic motion depend on 
the operating characteristics of the device. Diagnostic frequency 
waves could also lead to chaotic fluctuations in the time 
evolution of the transmitted intensities. 
 

Index Terms— chaos theory, incomplete information, 
knowledge base, knowledge reconstruction, maximum entropy, 
noisy signal, uncertainty.  
 

I. INTRODUCTION 
The solved knowledge base is very large and complex and 

represents a clue how to realize effective methodologies 
for real diagnostic system problem solving. The combination 
between object-oriented and knowledge-based approaches to 
application software system design is the most suitable for 
intelligent automation in the industrial engineering domain. In 
addition to the “formal knowledge“ bounded to data, there 
exists a knowledge which is a result of a gained experience or 
the so called heuristic knowledge. This fact is particularly true 
for industrial engineering processes and activities. 
From above mentioned point of view we have to solve a lack 
of information which is incomplete, uncertainty and vague. 
We often obtain relevant formally inexpressible information. 
Partially, it is possible to solve this problem also by fuzzy 
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theory principles applying. There are many approaches to 
deal with lack of information. We introduce the procedure 
which is able to estimate missing values in incomplete fuzzy 
relations. 

The methodology is also shown to be capable of 
encapsulating whatever knowledge is available. This paper 
also deals with the reconstruction of a knowledge base from 
observational data. The practical applicability of these 
methods is usually limited as it is impossible to estimate 
multidimensional probability distributions from observational 
data reliably. 

There are static and dynamic theories of degrees of belief. 
It is argued that maximum entropy is a dynamic theory and 
that a complete theory of uncertain reasoning can be gotten by 
combining maximum entropy inference with probability 
theory. A probability theory is a static theory. This “total“ 
theory – it seems – is much better grounded than are other 
theories of uncertain reasoning. 

A great deal of theoretical effort has been devoted to 
understanding the complex behaviour observed in the 
experiments. Active diagnostic systems such as the machinery 
relevant diagnostic signals monitoring have attracted more 
attention than passive systems. Its study has shown 
instabilities, higher-order dynamical states and non classical 
statistics of the monitoring solved signals. Here is created 
a software product which is usable in real practice of machine 
equipments environment. A static theory concerns the 
consistency conditions for degrees of belief at a given time. 
A dynamic theory concerns how one's degrees of belief 
should change in the light of new information The standard 
information-theoretic justification of maximum entropy 
inference goes as follows – when presented with information 
in the form of a set of probability constraints, we want to infer 
a probability distribution that satisfies those constraints but 
that, of all such distributions, is the least biased [1],.[2].To be 
least biased is to minimize the amount of information 
contained in the distribution. The distribution must have at 
least as much information content as the constraints since it 
satisfies them. Among the distributions satisfying the 
constraints there is a unique one, the maximum entropy 
distribution that has minimum information. Hence maximum 
entropy inference selects the right distribution [3], [4], [5], 
[6]. 

 

II. SOME PROBLEMS OF KNOWLEDGE RECONSTRUCTION 
One of the solved tasks here is to determine the knowledge 
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structure from observational data. The data available may 
consist of truth values for all nodes for some set of cases. It is 
assumed that it is known which nodes are goal hypotheses. 
The knowledge of joint distribution for all pairs of nodes 
enables one to find not only the structure of the corresponding 
graph, but also to order nodes and to determine their structure. 

Here is a solved knowledge base system. Events are 
represented by nodes and relationships between events are 
represented by edges. The node type is identified according to 
the channel matrix. If nonzero means mutual information 
between variables Xi and Xk , then the Xi is input and Xk is 
output of the communication channel or vice versa. Properties 
of the communication channel are determined by matrices, 
either [P(x i j / xk l )] or [P(xk l / x i j )]. 

The x i j  and xk l, i, k = 1, 2, ..., n, 
      j, l = 1, 2, ..., m 
are values of variables Xi and Xk  . It is assumed that all 

variables are metrical or ordinal and that the inputs for node 
Xk are nodes X1, X2, ... ,Xr. For the „AND“ node and m-valued 
logic, the following condition will be satisfied: 

 
xkl = min (x1p , x2q , ... , xrs ) (1) 
 

and for the „OR“ node, it will be determined: 
 

xkl = max (x1p , x2q , ... , xrs ) (2) 
 

where p, q, l, ..., s  =  1, 2, ..., m. Relations between output 
Xk and one of the inputs, e.g. Xr  were investigated. They are 
output and input of communication channel [7],[8] [9] [10]. 

There are channel matrices [P(xkl / xrs )] for the „AND“ and 
„OR“ nodes. They are as follows: 
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If the orientation of the channel is available, i.e. the 

assignment of variables both to the input and output of the 
channel is known, then the pertinent matrix determines the 
node type. If the node type is known, one can determine the 
orientation of the pertinent channel. The channel matrix can 
be neither upper triangular nor lower triangular. Then, there 
are three possibilities of a channel matrix form: unit matrix, 
any permutation matrix, or genuine stochastic matrix. 

One can show that there are the following relation holds: 
 

R ( Xi : Xk )  =  min [H(Xi), H(Xk)] (5) 
 

Where H(Xi), H(Xk) are entropies. In a special case, the 

channel matrix does not contain any 1.  
The condition 0≤ P(xkl / xij ) < 1  is thus satisfied and the 

channel matrix is than a genuine stochastic matrix. In this 
case, the node is a Bayesian one, and the output is not 
deterministic but a random function of relevant inputs. The 
relation may be other stochastic by its nature or deterministic 
– logical, and only be seems to be stochastic because some 
inputs are not available. 

There is a task - which of the two nodes associated with the 
edge is an input and which is an output of the channel. There 
is the possibility of finding the edge orientation in a special 
case of the channel matrix. Assume the channel matrix to be 
genuinely stochastic. Let it be a symmetrical one in addition, 
i.e. p j l  = p l j   for any  j, l = 1, 2,..., m.  It is a „doubly 
stochastic“ matrix. There is an expression for 
a communication channel with input Xi  and output Xk  and 
a doubly stochastic channel matrix: 

 
H (Xk)  ≥ H (Xi) (6) 
 

This means that if both entropies are not equal, the higher 
entropy is the entropy of the output variable. „Shannon’s 
entropy“ says nothing about channel orientation if the channel 
matrix is not symmetrical. In this case, there is an additional 
uncertainty resulting from the asymmetry of the channel 
matrix. The „uncertainty measure“ called relative entropy 
makes it possible to consider this additional uncertainty. The 
relative entropy is defined as: 
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where wj  are the prior weights,  HG(X i) – the relative 

entropy can be interpreted as a „Gibbsian entropy“ (a concept 
known from statistical dynamics). The weights wj as average 
values of elements of the jth column of the channel matrix are 
introduced here. The weights then correspond to probabilities 
of values of output if input values are uniformly distributed 
[10]. 

Relative entropies can be defined for both variables 
connected with the channel as: 

 

∑ ∑
= =









=

m

i

m

l
lkjijijiiG xxPxPxPXH

1 1
2 )()(log)()(  (8) 

∑ ∑
= =









=

m

k

m

j
jilklklkkG xxPxPxPXH

1 1
2 )()(log)()(  (9) 

 
If Xi is an input and Xk an output of the channel, the relative 

entropies satisfy the following inequality: 
 

)()( kGiG XHXH ≤  (10) 
 

If all inputs are known, the node type can be determined. 
This approach has been tested using data achieved from 
simulated knowledge base for solved diagnostic expert 
system. 
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Reconstruction technique shows how the introduced facts 
are used for knowledge base reconstruction. Start from the 
matrix [T(Xi:Xk)]. By the chi-square test, one eliminates the 
pairs Xi,, Xk for which the zero hypotheses, which are the 
hypothesis on statistical independence, cannot be refuted. 
These pairs correspond to elements 1 of the matrix 
[T(X i:Xk)] chi-square. Other elements have value 0. This 
matrix does not guarantee that all dependencies in the 
knowledge base have been detected. If the data set is not 
a representative ensemble and there is only a little 
information on some dependency, the dependency cannot be 
detected. On the other hand, an inappropriate choice of level 
of significance may result in some spurious dependencies. 

A fuzzy number is a fuzzy set defined on the real line. The 
membership function of a fuzzy set defined on a truth space 
with interval [0,1] could be interpreted as the „meaning“ of 
a label describing the degree of certainty in a linguistic 
manner. During the aggregation process, these fuzzy numbers 
will be modified according to  given combination rules and 
will generate another membership distribution that could be 
mapped back into a linguistic term for the convenience of user 
or to maintain closure [2], [5], [6], [10]. 

 

III. A MAXIMUM ENTROPY AND PROBABILISTIC REASONING 
Probabilistic reasoning is inherently an exponentially large 

problem. There are two fundamental problems associated 
with probabilistic reasoning – the amount of knowledge 
required and the size of the computation - which can be 
reduced by using knowledge which is in a very specific form, 
i.e. causal dependencies, and by propagating probabilities 
through a directed acyclic graph. Here are also following 
situations to solve. The knowledge provider has no 
information relating two or more events but would not like to 
assert that they independent or conditionally independent of 
each other. A possible way to proceed is to assume 
independence whenever the knowledge provided does not 
assert dependence. Other situation is if knowledge is available 
which cannot be propagated, e.g. expected values. If the 
knowledge is not in the form required for propagation, we are 
left with the problem that both the information required and 
the computations are potentially exponentially large, as in 
above mentioned problems. 

It is a big problem to provide an exponentially large 
quantity of knowledge, but the maximum entropy 
methodology will accept the information that can be provided 
and will estimate the rest. The maximum entropy 
methodology will accept knowledge – pertaining to the 
probability of given situations – in whatever form it may be 
given, thereby also handling the second above mentioned 
situation. The maximum entropy methodology can only 
estimate this missing information by making some sort of 
global assumption. This is usually done by invoking the 
principle of insufficient reason and assuming that, in the 
absence of any information, the joint probabilities are 
uniformly distributed. Consequently, the distribution derived 
using the maximum entropy methodology is referred to as 
being minimally prejudiced. 

The nature of the network is such that events are 

represented by nodes and relationships between events are 
represented by edges. The absence of an edge between two 
nodes is an assertion that there is some form of independence 
between the events. When an edge is present, specific 
information must be provided to fully specify the nature of the 
dependencies. Although propagation methods differ in detail, 
all require information which will enable the current 
probability of a node to be calculated from knowledge of the 
current probability of its antecedent nodes. The current 
(conditional) probabilities can be also calculated from the 
respective marginals which can each be found by summing 
the appropriate joint probabilities. 

A following example illustrates a maximum entropy theory 
approach which is compare with traditional theories approach 
[7], [8], [10]. 

A three node graph is assumed. Causal information in 
example has these relations (n1→n3,  n1→n2): 

 
node  n1: 11)( kEP =  

node  n2: 212 )( kEEP =|  

 312 )( kEEP =|  

node  n3: 413 )( kEEP =|  

 513 )( kEEP =|  (11) 
 

The nodes n1, n2, n3 represent events which can take these 
values: E1, E2, E3 and their inversions. The knowledge given 
in above mentioned three node causal tree is not in the form 
required by the maximum entropy method and so it has been 
converted into the form below using the convention for 
numbering the states. 
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The constraints given by equations (12) give rise to the 

following constraints/state matrix: 
 



























−−−−
−−−−

−−−
−−−−

−−−−−−−−

5555

4444

3333

2222

11111111

)1()1(0000
0000)1()1(

)1()1(0000
0000)1()1(

)1()1()1()1(
11111111

kkkk
kkkk

kkkk
kkkk

kkkkkkkk  (13) 

 
which in turn gives rise to the following general solution for 

the probability distribution for the states: 
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Substituting the general solution given by equation (14) 

into the constraints in equations (12) produces the 
expressions: 

 
)1()1( 424422110 )()()1(
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)1()1(1 535533110 )()()(
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3)1( 33
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5)1( 55
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By substituting the first, third and fifth equations from 

above mentioned equations (15) into each of the first four 
equations of equations (14) we have: 

 
4210 )( kkkSP =  

)1()( 4211 kkkSP −=  

4212 )1()( kkkSP −=  
)1()1()( 4213 kkkSP −−=          (16) 

 
By substituting the second, fourth and sixth equations from 

equations (16) into each of the last four equations of equations 
(15), we have: 
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from where: 
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Following important results, which can be made about 

above mentioned example, are here. It must be noted that the 
result agrees with those derived from first principles. 
Sufficient information was available to fully describe the 
system. In fact, had the answers disagreed, the soundness of 
the maximum entropy approach would have been brought into 
question. If the information is incomplete, i.e. one or more of 
k1, k2, k3, k4, k5  are missing, a solution from first principles is 
no longer possible. However, the maximum entropy method is 
not embedded and will still produce a result. 

The result will be a minimally prejudiced distribution for 
the probabilities P(Si) for i=0,1,2,3,4,5,6,7, i.e. it will be the 
result which, whilst complying with the constraints, keeps the 

probability distribution „as near as possible“ to the uniform 
distribution. This is almost certainly not the same as the 
distribution which would be achieved when everything was 
known for certain but, given the information available, it is 
arguably the best distribution to use. 

There are grounds for hoping that methods can be found for 
containing the computation of a maximum entropy solution 
for practical situations. Above mentioned evidences are based 
on the fact that computing the maximum entropy solution is 
feasible for a reasonably large number of events. There is the 
speculation that practical domains can be partioned, or 
decomposed, into clusters whose individual sizes do not 
exceed this number. There is also a possibility that it is the 
form of the knowledge and not the method used to compute 
the solution which determines the size of the computation. 
Computing the advice is conceptually easy, although it is also 
potentially large, but it too should respond to the same 
methods for containing the computation. 

In general, maximum entropy methods must be applied 
globally, but for the purposes of deciding whether or not it is 
wise to assume independence they could be used locally. 
Consequently, given the more usual directed acyclic graph, 
one could examine nodes which have more than one parent 
using maximum entropy, and determine the disparity between 
the minimally prejudiced solution and the one assuming 
independence. If the maximum entropy method could be used 
locally to determine the relationship between two events 
which would otherwise have to be assumed to be 
independence, this result could be added to the edge of the 
directed acyclic graph. By doing this whenever there was 
a significant discrepancy between the assumption of 
independence method and the maximum entropy method, one 
might produce a graph which have good agreement with 
global maximum entropy methods when processed by 
propagative methods. One would then have a computationally 
feasible method of producing a good approximation to 
a minimally prejudiced solution. 

We have some results that can be made about observations. 
The information given is incomplete, i.e. one or more of  ki  (i 
= 1,...,5) are missing, a solution from origin principles is no 
longer possible. The maximum entropy methodology is not 
impeded and will still produce a result. The result will be a 
minimally prejudiced distribution for the probabilities P(S i) 
for i = 0,...,7, i.e it will be the result which, whilst complying 
with the constraints, keeps the probability distribution as 
„near“ as possible to the uniform distribution. This is almost 
certainly not the same as the distribution which would be 
achieved when everything was known for certain but, given 
the information available, it is arguably the best distribution to 
use. 

 

IV. CHAOS THEORY PRINCIPLES APPROACH 
In practice, data, information and knowledge about real 

machinery equipment and technological processes are 
incomplete and insufficient for implementation of relevant 
diagnostic system. Chaos theory seems to be very important 
tool to gain control of these problems effectively. Chaos 
theory provides very valuable complementary information, 
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which is not possible to obtain by another means of analysis. 
We have higher quality of analysis at lower determinateness 
of inputs (achieved estimating and approximating 
trajectories). Missing useful information is possible to obtain 
by this way. Achieved experimental results are very 
promising. 

We solve, within diagnostic signal spectrum analysis, the 
lack of information or noise. The effect of additive and 
multiplicative stochastic noise on dynamical processes was 
studied. We designed the techniques for effective dealing 
with noise and dynamics. We realize simulation and 
experimental models for investigation of links between 
multiwave mixing and its well establish techniques, 
terminologies and dynamical system approaches. A nonlinear 
dynamical analysis is applied to predictive diagnostic system. 
A primary task in this area is how to determine whether 
a solved dynamical system is chaotic and if it is chaotic how 
to characterize its chaotic evolution. Our approach to solve it 
is based on estimating dimensions, Lyapunov exponents and 
metric entropies. By this approach we verify the presence of 
chaos as underlying noisy spectra and in characterizing of 
chaos types in various systems. 

Measurements of the metric entropy based on time-delay 
embedding vectors techniques seem to give two important 
values, i.e. both the maximum divergence rate and the 
maximum convergence rate of trajectories. The next task is 
how to interpret the measured characteristics of experimental 
data. Due to the high dynamical sensitivity of a system near 
a critical point, careful measurements of the frequency of the 
nearly of the periodic behaviour near a subcritical Hopf 
bifurcation point can be used to obtain information regarding 
system parameters. Solved diagnostic system can be 
described by semiclassical fields and additive, multiplicative 
stochastic noise. Semiclassical approximations provide the 
predictions of residual observable effects. The noise added to 
the solved system can disrupt the coherences that prevent 
chaotic evolution, thus permitting localization in real space 
and exponential divergence of trajectories as in the classically 
chaotic cases [11], [12], [13]. 

Surprising results on the very large influence of noisy 
microwaves (external and internal noise) with noise 
bandwidth roughly equal one half their frequency, were also 
included in partial solutions that cause „hesitations “in 
transitions between different instability regimes. Noise 
influence understanding from noise sources precise 
characterization point of view completes solved methodology 
approach. We experimentally observe the additive or 
multiplicative noise sources progress. Statistical fluctuation 
in observed frequency microwave dependences on others 
observed frequency microwaves. This fact influences lack of 
relevant information problem solving by higher quality of 
analysis. 

Some diagnostic problems could be operated in a chaotic 
fashion. Achieved results showing how the fractal dimension 
and entropy describing the chaotic motion depend on the 
operating characteristics of the device. Experiments show 
how stimulated scattering induced by counterpropagating 
(diagnostic) frequency waves could also lead to chaotic 
fluctuations in the time evolution of the transmitted 
intensities. 

The basic ideas of solved methodology are based on the 
following calculations. We investigate the effect of noise and 
the accuracy of the prediction using genetic algorithm. The 
more noise the system has the more difficult it is to discern the 
structure with more judgements. We introduce some noise 
levels with the testing purpose whether the genetic algorithm 
tool is still able to recognize the system and realize useful 
prediction. Experiments show that the genetic algorithm 
approach is able to learn the judged structure. 

We realize a genetic algorithm scheme by this way: 
Genetic_Algorithm () 
( <Initialize population> 

while <Not (Stop condition)> do( 
<Fitness evaluation> 
<Selection> 
<Reproduction and Mutation> 
) 

<Choose final solution> 
) 
 
A genetic algorithm is a stochastic computational model 

that seeks the optimal solution to an objective function. 
Fitness function, as well as the parameters of the fitness 
function, can affect the result of learning process. The fitness 
of an individual structure is a measure indicating how fitted 
the structure is. The search is performed through an iterating 
procedure applied to a „population of individuals“, i.e. a set of 
feasible solutions. Searching strategy is similar to biological 
evolution, i.e. better solutions are reproduced, whereas worse 
solutions are discarded. Thus, the search strategy is based on 
the possibility to discriminate between elements in order to 
resolve which is the good solution of the fitness function and 
therefore has a good chance of reproducing and generating 
new elements with its genetic inheritance. 

We have a parameter Fmn , which is the best fitness of a 
string in the population for test problem example m after 
generation n.A parameter pt is the number of test problems 
[10], [11]. The fitness of the genetic algorithm GAFs after 
generation n is given by: 
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A general used formula for calculation of multidimensional 

vector data code is given by [14], [15]: 
 

1),(

)1(

,21

21

2

=⋅⋅⋅

×⋅⋅⋅××=
+−

i

i

VVVwith

VVV
R
kk

 (21) 

 
We enumerate a set of nodes of  V1 × V2 ×, … , × Vi  (grid). 

Each node of the grid meet exactly R-times. We consider 
fuzzy rule base of Takagi-Sugeno system form. The 
Takagi-Sugeno fuzzy model is described by a set of fuzzy 
implications, which characterize local relations of a system in 
the state space [16] to [21]. 

The controlled Takagi-Sugeno fuzzy system is described as 
follows: 
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The controller is taken as a sinusoidal function. In the 

simulation, the magnitude of the control input is 
experimentally chosen to be  δ=0.09. Thus, || v(t)  ||∞  < δ, and 
can also be regarded as a control parameter. Without control, 
the Takagi-Sugeno fuzzy model is stable. 

Let the solved dynamical system is generally described by 
the differential equation [13], [19]: 

 

),()( µxF
dt
dxtx =≡  (23) 

 
where x is a vector whose components are the dynamical 

variables of the system, F (x,µ) is a nonlinear function of x and 
µ stands for the control parameter. Let x1(µ) and x2(µ) be two 
different solutions of equation (23). A critical point is 
therefore defined by the equation: 

 
x1 (µc) = x2 (µc) (24) 
 

which is an implicit equation for µc . The Jacobian matrix 
G(x, µ) associated with F (x,µ) is defined through: 

 
F (x+δx, µ)  =  F (x,µ) + G(x, µ) δx + 0(δx)2 (25) 
 

The fundamental property that can be proved by using the 
implicit function theorem is: 

 
det G(x, µc)  =  O (26) 
 

This result implies critical slowing down. This is easily 
shown by a linear stability analysis of the solution x1(µ). 

We have the following assumption: 
 

(x,µ)  =  x1(µ) + εx'(µ) exp(λt) + 0 ε (27) 
 
det {λI -  G(x1, µ)}  =  O (28) 
 

where I is the unit matrix, the ε-exponent is interpreted as a 
dimension. Hence at µ = µc  one root (at least) of  (28) will 
vanish, implying an infinite relaxation time. This result 
remains true if x1(µ) and x2(µ)  are time-periodic solutions of 
relation (23). We realize the direct estimate of fractal 
dimension from experimental data (embedding theorem and 
related topics) with a particular attention to the effect of 
filtering on a chaotic signal. 

All relevant quantities involved in the description of 
strange attractors require taking some limit (either in space or 
in time) [12] [20], [21]. The fractal dimension, for example, is 
related to the scaling behaviour of the (natural) invariant 
measure µ, when the observational resolution is increased. To 
be more specific, we first define a partition (covering) of the 
phase space, as a collection of disjoint open sets with variable 
size εi. In this way, we can associate a mass pi to each element 

Ei  of the partition as: 
 

∫=
iE

i dm µ  (29) 

 
The mass mi  can be evaluated from the fraction of points 

belonging to Ei, when a sufficiently large number of the set 
points, is generated according to the measure µ.  From the 
obvious consideration that  m~ε1 in the case of a plane, it 
follows that the ε-exponent is to be interpreted as a dimension. 
Accordingly, we can define a local dimension αi  in terms of 
size and mass of the i-th  element of the covering: 

 
mi ~ εi αi (30) 
 

where εi  is assumed to be sufficiently small, and we let αi  

explicitly depend on the index i.  This is a crucial point that 
makes also a statistical approach most appropriate. Metric 
entropy using improves this approach. It is also worth noting 
that such a definition of dimension is not affected by the 
existence of multiplicative factors, since they only yield 
corrections to the leading scaling behaviour. Hence, they can, 
in principle, be neglected, although their contribution is often 
relevant in numerical simulations. The distinctive features of 
a numerical algorithm for the estimation of fractal dimensions 
are essentially related to the partition used to cover the set. 
Therefore, the task starts from the rules to generate a suitable 
covering (according to the probability of each element). This 
approach can be extended to metric entropies and Lyapunov 
exponents for problem solving improving. 

The action of the map F in phase-space is translated into a 
shift of symbols in the associated space: 

 
xn →  xn+1 ⇒   {…, sn-1 ,sn , sn+1 ,…}  →   {…, sn ,sn+1 ,sn+2 , …}
 (31) 
 

The time origin in the (doubly-infinite) symbol sequence is 
moved one place to the right. When a generating partition is 
not known, as in the case of experimental data or in most of 
computer simulations, it is possible to divide the searching 
space of size εi  < ε (they are usually taken all equal for 
simplicity) and evaluate the metric entropy as: 

 

∑
−

=
∞→→

NS
N

q
N

Sp
qN

qK )(ln
)1(

11limlim)(
0ε

 (32) 

 
where the limit ε→0  guarantees that a generating partition 

is finally obtained. The performed analysis assumes implicitly 
the knowledge of all coordinates of each attractor's point in 
phase space. This is certainly the case of all numerical 
simulations, but it is not always possible in experiments. 
Sometimes, just one variable can be measured at different 
times. 

In this way, we construct the values and parameters of 
genes within solved domain chromosome. We solve metric 
entropy for each element or for solved chromosome within 
genetic algorithm running. This chromosome implementation 
by genetic algorithm approach is near to real diagnostic 
situation representation. Nowadays, some experiments were 
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realized. Achieved results are very promising. By this way, 
we will avoid distorted fitness values arising from possibly 
different degrees of complexity of test problem examples 
[11],[12],. The fitness of an individual structure is a measure 
indicating how fitted the structure is. 

Distributed noise was added to the genetic algorithm 
running from 1 to 100 % to see the noise effect on the 
prediction accuracy. Experiments show that the structure of 
the system unrecognisable was less than 3,85 % and not 
influence the requirement prediction function of solved 
diagnostic system. 

We have the following time series: 
 

x=x1,x2,,  ,  xn, (33) 
 

where dimension equals to d. and added coordinate y is 
expressed: 

 
y = f[x(t-q)] (34) 
 

where q  is time delay. 
The distance of all nearest neighbour in dimension d is 

computed and then compared to the corresponding nearest 
neighbour in dimension d+1. If we have the case that the 
distance is almost the same, it means it is not a false nearest 
neighbour. By increasing the dimension value until there is no 
further decrease of the false nearest neighbour count, then the 
dimension d found is the minimum embedding dimension. 
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−
=  (35) 

 
where xm  represents the actual value and xm’  represents the 

predictive value. 
We provide also a contribution into inductive inference 

problem solving, that is mathematically well-based theory of 
algorithmic learning from incomplete information. 
„Learning“ belongs to the central issues of artificial 
intelligence likewise learnability is a fundamental 
characteristics of natural intelligence [11], [21]. 

 

V. CONCLUSION 
The other property of created methodology based on 

maximum entropy which has not yet been explored is their 
ability to include noncausal information. This property is 
inherent to maximum entropy methods because they comply 
with the constraints imposed on them whatever the nature of 
these constraints – as long as they are mutually compatible. 

A research within the solved problem demonstrates that it 
is relatively easy to estimate missing information using the 
maximum entropy methodology. Methodology need to rely 
on domain specific properties to permit simplification. There 
are difficult computational requirements of the maximum 
entropy methodology for large knowledge domains. Our 
future work will also focus on two main tasks. At first, we 
want to examine practical diagnostic applications within 

solved expert system for which the global maximum entropy 
solutions can be computed for example in polynomial time. 
Secondly, we want to find efficient approximate 
methodologies which give good agreement with global 
maximum entropy solutions for practical diagnostic 
applications not covered by the above mentioned. 

In practice, we solve possible types and forms of 
incompleteness, uncertainty and lack of information within 
analysis process of solved diagnostic system. In real 
manufacturing situation we often classify data under 
uncertainty conditions. Commonly encountered problem is 
the aggregation of the clustering results with the expert 
judgements. Uncertainty contains uncertainty of classification 
objectives, basic data uncertainty or incompleteness, 
positional and form relationship uncertainty, quantity of 
clusters uncertainty and partitioning fuzziness. This paper 
presents also a genetic algorithm approach using to predict 
the chaotic system. Some noise levels were introduced with 
the purpose to test whether the genetic algorithm 
methodology is still able to recognize the system and make 
a useful prediction. The chaotic system structure can be learn 
by genetic algorithm as long as the noise in the chaotic system 
does not exceed a certain value. The more difficult is for the 
genetic algorithm to learn the underlying structure of the 
chaotic system (the higher or the lower level of the noise). 
Generally used methods developed in both fractal geometry 
and chaotic dynamics explain a multitude of diverse physical 
phenomena i.e. from trees to turbulence, cities to cracks, heart 
beat to fluid flow and much more [11], [13]. 

Forecast of future statements within diagnostic problems 
experimental modelling has been important and has brought 
relevant results to secure and predict optimal operation of 
technological processes in manufacturing context. 
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