
 
 

 

  
Abstract—This paper investigates inventory control policies 

in a manufacturing/remanufacturing system during the product 
life-cycle, which consists of four phases: introduction, growth, 
maturity, and decline stages. Both demand rate and return rate 
of products are random variables with normal distribution, and 
the mean of the distribution also varies according to the time in 
the product life-cycle. Closed-form formulas of optimal 
production lot size, reorder point, and safety stock in each 
phase of product life-cycle are derived. A numerical example is 
presented. The result shows that different inventory control 
policies should be adopted in different phases of product 
life-cycle. 
 

Index Terms—inventory, product life-cycle, remanufacturing, 
reverse logistics 
 

I. INTRODUCTION 
For the last decades, many electronic companies 

encountered two major pressures: shortening product 
life-cycle and environmental sustainability. Inventory 
management under short product life-cycle is not easy. It is 
necessary to consider the constantly varying demand and its 
uncertainty when making inventory control policy. Due to 
short product life-cycle, the product may be returned even if 
it is still in good condition. On the other hand, many 
companies are required to conform to the Waste of Electric 
and Electronic Equipment (WEEE) directives in many 
countries. Environmental sustainability and green supply 
chain management have become more and more important 
and have received increasing attention since 1990s [1]. 
Several international journals have published special issues 
about sustainable/green supply chain management in recent 
years [2]-[5]. Two review articles also provide deep 
discussion about sustainable supply chain management [1], 
[6]. These articles indicate that the global trend of 
environmental sustainability is inevitable. 

The pressures from shortening product life-cycle and 
environmental sustainability make remanufacturing become 
a reasonable choice. Remanufacturing is an industrial process 
where used/broken products are restored to useful life. 
Remanufacturing is also an important part of sustainable 
supply chain and reverse logistics. The motives for product 
remanufacturing include legislation, increased profitability, 
ethical responsibility, secured spare part supply, brand 
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protection, and the reasons for returning used products 
include end-of-life returns, end-of-use returns, commercial 
returns, and re-usable components [7]. After remanufacturing, 
the returned products, together with the new products, 
compose the serviceable inventory and satisfy the customers’ 
demand. Inventory control in such remanufacturing systems 
becomes complicated and receives a lot of attention. 

In literature of inventory control with remanufacturing, 
there are two different assumptions about returned products: 
one is as-good-as-new and the other is not. Under 
“as-good-as-new” assumption, the used products are 
collected and remanufactured to as-good-as-new state. The 
customers cannot distinguish ‘‘new’’ (‘‘manufactured’’) and 
‘‘remanufactured’’ (‘‘repaired’’) products, or they consider 
these two products as being interchangeable. In this paper, 
we also apply this assumption to the analysis procedure. The 
relevant literature in this field is reviewed in the following. 
Reference [8] considers several inventory control strategies 
with remanufacturing and disposal. The product demands 
and product returns are assumed to be independent Poisson 
processes. Later, the PUSH and PULL strategies are 
considered in the inventory model to coordinate production, 
remanufacturing and disposal operations efficiently [9]-[10], 
although the strategies may still be non-optimal. Lead-time 
effects are further investigated in a similar remanufacturing 
system to improve the system performance [11]-[12]. 
Recently, reference [13] studies a single-echelon inventory 
system with disposal for remanufacturing. It compares the 
disposal strategy with the non-disposal strategy and 
investigates the robustness of the optimal solution. Reference 
[14] studies joint procurement and production decisions in 
remanufacturing under quality and demand uncertainty. 

All above articles assume that demand rate and return rate 
are independent. To improve this improper assumption, [15] 
develops an inventory model in which the random returns 
depend explicitly on the demand stream. It assumes a 
constant probability that an item is returned. Reference [16] 
considers inventory strategies for a reverse logistics system, 
in which demand is a known continuous function in a given 
planning horizon and the return rate of used items is also a 
given function of time; there is a constant delay between 
these two functions. 

As to our knowledge, there is no article that considers 
product life-cycle in inventory control with remanufacturing. 
Most articles assume that demand rate and return rate follow 
specific distributions with fixed parameters, which are 
consistent through product life-cycle. Although [17] has 
developed strategies to balance supply and demand for 
remanufactured products during life-cycle, it does not present 
a clear inventory control policy. 
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The purpose of this paper is to investigate the effects of 
product life-cycle on inventory control in a 
manufacturing/remanufacturing system and to determine the 
optimal production lot size, reorder point, and safety stock 
during each phase of product life-cycle. The remainder of the 
paper is organized as follows. Section 2 presents the 
assumptions and notations. Section 3 is for mathematical 
modeling. Section 4 is for numerical examples. Finally, the 
paper summarizes and concludes in Section 5. 

 

II. ASSUMPTIONS AND NOTATIONS 
The scheme of the manufacturing/remanufacturing system 

in this paper is illustrated in Fig. 1. The serviceable inventory 
stocks the manufactured and remanufactured products to 
satisfy the demand. There are two sources to replenish the 
serviceable inventory; one is manufacturing new products 
and the other is remanufacturing the returned products. The 
remanufactured products are assumed to be as good as new 
ones. We also assume that both demand rate and return rate 
of products are random variables with normal distribution, 
and the mean of the distribution also varies according to the 
time in the product life-cycle, as illustrated in Fig. 2. We can 
see that the return rate is not independent to the demand rate. 
There is a time lag between two functions, and the peak of 
return rate function is lowered. The product life-cycle is 
composed of four phases (i.e., introduction, growth, maturity, 
and decline) and is distinguished by the sales or the demand 
over time. 

 

 
 
Fig. 1  Scheme of the manufacturing/remanufacturing system 

 
 
 

 
Fig. 2  Product life-cycle and the relation between demand 

rate and return rate 
 

Other assumptions include: (1) the lead time for 
manufacturing is constant, (2) a returned product is either 
remanufactured or recycled/disposed immediately; the 
remanufacturing time is ignored, (3) the unit cost for 
remanufacturing a returned product is less than the unit cost 
for manufacturing a new product, (4) no salvage value or 
disposal costs are applied to a recycled/disposed product. 

Notations used in this paper are listed below: 
Decision variables: 

iy  number of production activities in phase i of 
product life-cycle 

is  safety stock in phase i of product life-cycle 

Dependent variables: 

jiQ ,  production lot size in thj production activity in 
phase i  

jiROP , inventory level of reorder point 
for thj production activity in phase i 

jiD ,  mean of the total demand during the lead time of 
thj production activity in phase i 

iTC  sum of the fixed cost of manufacturing orders 
and the holding cost in phase i 

( )tI  inventory level at time t 

Parameters: 
( )tλ  mean of demand rate at time t 
2
λσ  variance of demand rate 

( )tγ  mean of return rate at time t 
2
γσ  variance of return rate 

( )tλ
~  mean of net demand rate at time t; 

( ) ( ) ( )ttt γλλ −=
~  

iT  length of phase i 
τ  lead time for manufacturing 
f fixed cost per manufacturing order 
h holding cost of a product per unit time 

ii ba ,  constants 
LOS preset level of service, referring to the 

probability of no stockout 
 

III. MATHEMATICAL MODELING 
In this section we will discuss how to manage the 

inventory during different phases of product life-cycle, 
including determining the optimal production lot size, 
reorder point, and safety stock. 

A. Introduction phase (phase 1) 
In this phase, the demand rate remains at a low level; the 

returned products are rarely seen and can be ignored. 
Therefore we suppose ( ) 1at =λ  and ( ) 0=tγ . Since ( )tλ  is a 
constant, we can use Economic Order Quantity (EOQ) model 
to determine the optimal production lot size. The sum of the 
fixed cost of manufacturing orders and the holding cost is 
expressed as follows: 

( ) ( ) hTQfQTaTC 111111 2// +=  (1) 
According to EOQ model, we can derive the optimal 

production lot size 1Q  for each production activity in phase 1 
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as follows: 

h
faQ 1

1
2

=  (2) 

Since total demand during the lead time is also a random 
variable that follows normal distribution: N( 1aτ , 2

λτσ ), the 
safety stock is necessary for preventing stockout and keeping 
a high level of service (LOS). The higher LOS is, the higher 
safety stock is needed. Suppose 1−F  is the reverse 
cumulated probability function of the standard normal 
distribution; the safety stock can then be derived as follows: 

( ) λστLOSFs 1
1

−=  (3) 
After the safety stock is determined, the reorder point for 

each production activity in this phase can be calculated: 
111 saROP += τ  (4) 

Once the inventory level is less than 1ROP , an order for 
manufacturing 1Q  products is placed. 

B. Growth phase (phase 2) 
In this phase, the demand begins to rise rapidly; on the 

other hand, some returned products also emerge due to 
end-of-use or end-of-life. For simplification, we suppose the 
means of both demand rate and return rate increase linearly 
over time in this phase. Since the demand rate is greater than 
the return rate and the unit cost for remanufacturing a 
returned product is less than the unit cost for manufacturing a 
new product, all returned products will be remanufactured. 
The mean of net demand rate for new manufactured products 
equals ( ) ( )tt γλ − , which is a linear function ( ) 22

~ btat +=λ  

as shown in Fig. 3. Since ( )tλ
~  increases over time, the 

production lot size may not be the same each time. Suppose 
that there are 2y  production activities in this phase and that 
the lengths of time periods between production activities are 
the same. Once 2y  is determined, the production lot sizes 

jQ ,2  can be calculated as shown in Fig. 3 and the following: 

( )( )

( ) .1,...,0,12
2

~

2
2

2
2

2

2

22

1
,2

22

22

−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+=

= ∫
+

yj
y
Tb

y
Tja

dttQ
yTj

yTjj λ

 (5) 

To choose an optimal 2y , we establish the following 
mathematical model, in which 2TC  is the sum of the fixed 

 
Fig. 3  Relations between net demand rate and decision 

variables in phase 2 

cost of manufacturing orders and the holding cost: 

( )( )
.~

min

22

22 22

2

2

1
,2

1

0

22

∫ ∫∑
+−

=
⎟
⎠
⎞

⎜
⎝
⎛ −

+=

yTj

yTj

t

yTjj

y

j

y

dtdxxQh

fyTC

λ
 (6) 

The second term in Eq.(6) refers to the holding cost, which 
is the integration of the inventory level multiplied by the unit 
holding cost h. The inventory level function ( )tI  (safety 
stock not considered yet) is illustrated in Fig. 4 and the 
following: 

( ) ( )

( ) 22222

2
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 (7) 

Applying Eqs. (5) and (7) to Eq.(6),  we obtain the 
following model: 

.
2412

min 1
2

2
2

23
2

22
2

3
2

2
22

2
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ +++= −− yTbTayTahfyTC

y
 (8) 

To prove that 2TC  is a convex function, we calculate the 
first order and the second order derivatives of 2TC  in the 
following: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ ++−= −− 2
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2
23

2
23

2
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2
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2

2

246
yTbTayTahf

dy
dTC  (9) 

⎟⎟
⎠
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2
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22
yTbTayTah

dy
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Q 0,,, 222 >Thba  and 12 ≥y , 

∴ 02
2

2
2

>
dy
TCd , 2TC  is convex. 

Therefore, we let 0
2

2 =
dy

dTC  to calculate the optimal 2y  

that minimizes 2TC . It follows: 

0
624

3
2

2
2

2
2

23
2

23
2 =−⎟

⎠
⎞

⎜
⎝
⎛ +− hTayTbTahfy . (11) 

Eq. (11) is a cubic equation in 2y  and can be solved using 
Cardano formula or other suitable methods. 

 
Fig. 4  Inventory level (safety stock not considered yet) in 

phase 2 
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Fig. 5  Relations between net demand rate and decision 

variables in phase 3 
 

However, the solution obtained from Cardano formula 
may not be an integer solution. Recall that 2TC  is a convex 
function; we can calculate 2TC  values of the nearest two 
integers to the solution obtained from Cardano formula and 
choose the one with smaller 2TC  value as the optimal 
solution for 2y . 

The net demand of new manufactured products at time t 
follows normal distribution with the mean 

( ) ( ) ( ) 22
~ btattt +=−= γλλ  and the variance 22

γλ σσ + . 
Therefore, the total demand for new manufactured products 
during the lead time of thj production activity in this phase 
also follows normal distribution with the mean 

( )

22
22

2

2
2

,2

,...,1,
2

~22

22

yjba
y
Tja

dttD
yjT

yjTj

=+−=

= ∫ −

τττ

λ
τ

 (12) 

and the variance ( )22
γλ σστ + . To prevent stockout, the 

following safety stock is necessary: 

( ) ( )221
2 γλ σστ += − LOSFs . (13) 

The reorder point for thj production activity in this phase is 
then derived: 

( ) ( ) .,...,1, 2
221

,2

2,2,2

yjLOSFD

sDROP

j

jj

=++=

+=

−
γλ σστ

(14) 

Once the inventory level is less than jROP ,2 , an order for 

manufacturing jQ ,2  products is placed. Note that both the 

reorder point and the production lot size will increase each 
time due to the increasing net demand in this phase. 

C. Maturity phase (phase 3) 
In this phase, the demand stops increasing and keeps in a 

steady state, while more and more end-of-use and end-of-life 
products are returned. For simplification, we suppose ( )tλ  is 
a constant and ( )tγ  increase linearly over time in this phase. 
Fig. 5 illustrates the relations between the mean of net 
demand rate ( )tλ

~  and other decision variables in this phase. 

Suppose ( ) 33
~ btat +=λ ; we can derive the production lot 

sizes jQ ,3  and the reorder point jROP ,3  following a similar 

procedure as in phase 2. First, jQ ,3  can be derived as 
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where 3y  is obtained by solving the following 
mathematical model: 

( )( )
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min

33

33 33

3

3

1
,3

1

0

33

∫ ∫∑
+−

=
⎟
⎠
⎞

⎜
⎝
⎛ −

+=

yTj

yTj

t

yTjj

y

j

y

dtdxxQh

fyTC

λ
 (16) 

Eq.(16) can be simplified as follow: 
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To prove that 3TC  is a convex function, we calculate the 
first order and the second order derivatives of 3TC  as 
follows: 
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Q 0333 ≥+ bTa , 03 <a  and 13 ≥y , 

∴ 02
3

3
2

≥
dy
TCd , 3TC  is convex. 

Therefore, we let 0
3

3 =
dy

dTC  to derive the optimal 3y  that 

minimizes 3TC . It follows: 

0
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⎜
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⎛ +− hTayTbTahfy . (20) 

Eq. (20) is a cubic equation in 3y  and can be solved using 
Cardano formula. After that, we calculate 3TC  values of the 
nearest two integers to the solution obtained from Cardano 
formula and choose the one with smaller 3TC  value as the 
optimal solution for 3y . 

The net demand of new manufactured products at time t 
follows normal distribution with the mean 

( ) ( ) ( ) 33
~ btattt +=−= γλλ  and the variance 22

γλ σσ + . 
Therefore, the total demand for new manufactured products 
during the lead time of thj production activity in this phase 
also follows normal distribution with the mean 

( )

33
23

3

3
3
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,...,1,
2

~33
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yjba
y
Tja

dttD
yjT

yjTj

=+−=

= ∫ −

τττ
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and the variance ( )22
γλ σστ + . To prevent stockout, the 

following safety stock is necessary: 
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( ) ( )221
3 γλ σστ += − LOSFs . (22) 

The reorder point for thj production activity in this phase is 
then derived: 

( ) ( ) .,...,1, 3
221

,3

3,3,3

yjLOSFD

sDROP

j

jj

=++=

+=

−
γλ σστ

 (23) 

Once the inventory level is less than jROP ,3 , an order for 

manufacturing jQ ,3  products is placed. Note that both the 

reorder point and the production lot size will decrease each 
time due to the decreasing net demand in this phase. 

From Eqs. (13) and (22), we can see that the safety stocks 
required in phase 2 and phase 3 are the same. This result 
shows that the safety stock is only relevant to the length of 
lead time, the variance of net demand and the required level 
of service. If all these items in different phases are the same, 
the safety stocks will be the same, too. 

D. Decline phase 
In this phase, the demand rate starts to decline. If the 

demand rate is still greater than the return rate, all returned 
products will be remanufactured; otherwise, there will be no 
production of new products and some of returned products 
will be disposed or recycled. We further discuss these two 
scenarios of decline phase in the following two subsections. 

D.1 Decline phase I (phase 4) 
In this phase, we suppose ( )tλ  is decreasing linearly but 

still greater than ( )tγ , which is also assumed to be a linearly 
increasing function over time. The net demand rate for new 
manufactured products is then defined as ( ) 44

~ btat +=λ , 
which is also a decreasing linear function. Therefore, we can 
repeat the analysis procedure in Section 3.3 and derive the 
following results. 

Production lot size: 

( )( )
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where 4y  is obtained by solving the following integer 
cubic equation: 

1,integer

,0
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Reorder point: 

( ) ( ) 4
221

,4,4 ,...,1, yjLOSFDROP jj =++= −
γλ σστ  (26) 

where 44
24

4

4
4,4 ,...,1,

2
yjba

y
TjaD j =+−= τττ . 

D.2 Decline phase II (phase 5) 
In this phase, the demand rate keeps declining and is lower 

than the return rate. Therefore, the excess returned products 
appears and some will be disposed or recycled to reduce the 
unnecessary remanufacturing and holding costs. In addition, 
all products come from remanufacturing and no new products 

will be produced. As a result, there is no need to calculate the 
production lot size and the reorder point. However, to ensure 
the required level of service, we have to control the 
inventory ( )tI  at the following level: 

( ) ( ) ( ) λσλ LOSFttI 1−+=  (27) 
When a product is returned at time t, it will be 

remanufactured if the current inventory level is less than 
( ) ( ) λσλ LOSFt 1−+ ; otherwise, it will be disposed or 

recycled. 

E. Summary 
From above analysis, we make some remarks in the 

following. Although the prediction of the phase length is 
usually regarded as an important issue, the production lot size 

1Q  and the reorder point 1ROP  in phase 1 are irrelevant to 
the phase length according to Eqs. (2) through (4). The 
prediction of the demand rate, instead, is more important in 
this phase (phase 1). Different from phase 1, the phase 
lengths in phase 2 to phase 4 will affect the inventory policies. 
In addition, the production lot sizes and the reorder points in 
phase 2 to phase 4 can be calculated using the same formula, 
as long as the net demand rate function ( )tλ

~  is derived first. 

IV. NUMERICAL EXAMPLES 
In this section, we provide a numerical example to show 

how the proposed method works. Fig. 6 shows the demand 
rate and return rate functions for the numerical example. 
Other parameters are given as: 3=τ , 500=f , 1.0=h , 

1002 =λσ , 2002 =γσ  and 97.0=LOS . The inventory 
control policy in each phase is discussed in the following. 
Phase 1: 

Let 1a =30. The optimal production lot size, reorder point, 
and safety stock are derived as follows: 

1Q =547.72; 1ROP =122.58; 1s =32.58 
Phase 2: 

From Fig. 6, we have 2a =3, 2b =30, 2T =60. First, we 
have to calculate the optimal number of production activities 

2y . From Eq.(11), we have 

06.212.43 2
3
2 =−− yy  (28) 

 

Fig. 6  Demand rate and return rate functions for the 
numerical example 
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Fig. 7  Inventory level over time 

 
Solve Eq. (28) using Cardano formula or any other capable 

tools, we have 2y =6.809685. The integer solution will be 

2y =7, because ( ) ( )76 22 TCTC > . The optimal production lot 
size and reorder point are then derived as follows: 

6,...,0,35.36741.220,2 =+= jjQ j  (29) 

7,...,1,92.13214.77,2 =+= jjROP j . (30) 

The safety stock 42.562 =s . 
Phase 3: 

Let 3a =-2, 3b =210, 3T =45. From Eq.(20), we have 

05.303725.16706500 3
3
3 =+− yy  (31) 

Solve Eq. (31) and we have 3y =5.687206. The integer 
solution will be 3y =6, because ( ) ( )65 33 TCTC > . The 
optimal production lot size and reorder point are then derived 
as follows: 

5,...,0,75.15185.112,3 =+−= jjQ j  (32) 

6,...,1,42.69545,3 =+−= jjROP j . (33) 

The safety stock 42.563 =s . 
Phase 4: 

Let 4a =-4.8, 4b =120, 4T =25. From Eq.(20), we have 

05.275.3 4
3
4 =+− yy  (34) 

Solve Eq. (34) and we have 4y =1.402801. The integer 
solution will be 4y =1, because ( ) ( )12 44 TCTC > . The 
optimal production lot size and reorder point are 15000,4 =Q  

and 02.781,4 =ROP , respectively. The safety stock 

42.564 =s . 
Phase 5: 

In this phase we have to control the inventory level at: 
( ) ( ) 81.18+= ttI λ  (35) 

A returned product will be disposed or recycled if the 
current inventory level is higher than ( ) 81.18+tλ . 

Under the above inventory control policy, the inventory 
level over time is illustrated in Fig. 7. 

V. CONCLUDING REMARKS 
In this paper, we have analyzed the relation between 

demand rate and return rate in a manufacturing/ 
remanufacturing system during each phase of product 
life-cycle. The major contribution of the paper is that the 
closed-form formulas of optimal production lot size, reorder 
point, and safety stock in each phase of product life-cycle are 
successfully derived. The numerical example shows the 

practicability of our model and indicates that different 
inventory control policies should be adopted in different 
phases of product life-cycle. In phase 1, the EOQ model with 
safety stock is workable. In phase 2, the production lot size 
should be increased each time. On the contrary, the 
production lot size should be decreased each time in phase 3 
and phase 4. Finally, there is no need to manufacture new 
products in phase 5. Some returned products are even 
disposed to reduce the unnecessary remanufacturing and 
holding costs. In phase 5 we only have to keep the inventory 
at a decreasing level that can ensure the required level of 
service. 
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