
Software Engineering Practices in Embedded System
Design Using Discrete Modeling Techniques

Dr. Manuj Darbari, Hasan Ahmed

Abstract - This paper highlights the requirement engineering
process for embedded system design in mathematical form. The
objective is to formalize the requirement phase with respect to
the actual behavior of the processes in real time mode. The paper
deals with embedded chip design requirements for Mobile
Phones and similar embedded systems.

Keywords – Groups, Rings, Fields.

I. INTRODUCTION

Embedded systems most often need real time programming.
Real Time operating systems and their working are generally
shown by two methods: 1. Finite state machine 2. Petri-Nets.
But theses two modeling methods have shown certain
limitations as many sophisticated embedded systems are
multiprocessor systems and the processes have short latencies.
In order to classify the processes for short latencies we have
identified a third methodology named Discrete Modeling
Technique.

We have to give human perception and sociology their due
weightage as the requirements are gathered from human beings
and to bring forth their feelings and anticipations to form a
software system, a huge chunk of requirements are to be
analyzed and categorized into three sorts of persons -
introverts, extroverts and ambiverts.

If we try to express requirements of a software system in
mathematical terms, then there can be one of the ways of
verifying their consistency and validation. Normally, the
requirements are considered in isolation and then enumerated
as a list. But, we should not forget that software systems are
complex and expose complicated and a large number of ways
in which they can be used and hence, a large number of
behaviors (expected and unexpected).

 Manuscript received March 2, 2010.
Manuj Darbari is with Babu Banarasi Das National Institute
of Technology and Management, Lucknow, India
(corresponding author) phone: 091-522-2311551 e-mail:
manujuma@ rediffmail.com
Hasan Ahmed is working as Sr. Design Engineer in R&D
wing of Nokia India Ltd, Bangaluru. (e-mail:
hasaninbox@gmail.com)

This also has implications for security requirements (and
expectations) from the system in question [1, 3, 4, 5].
Normally, Functional Requirements are first looked into when
signing off the requirement phase than Non Functional
Requirements (NFRs).

II. THE MODEL

Let us say that a requirement ‘a’ can be met and a software
system can be expected to fulfill that. Now, we take another
requirement ‘b’ and assign it some expectation from a system.
We know how a system would react while obliging to the two
requirements individually. But, a third requirement comes into
play when the two requirements are to be met concurrently.
Two requirements are said to be concurrent when system
expectation of the first one is not over and the second one gets
triggered. Since this third requirement was not one of the
formally specified requirements, it may lead to some
unexpected phenomenon (if not perceived/planned for). This
can be very dangerous for safety critical systems. We, now, go
on to present a mathematical form of meeting the need of
validating the requirements (while assuring their completeness)
and assuring that the system behaviour lies under the scope of
consistency and acceptability.

The concept of Groups, Rings and Fields is well known in
algebra [2]. If we translate the requirements of a system (to be
built) into mathematical elements, then we will be able to
operate on them algebraically. Let us first discuss the just
mentioned algebraic concepts. Groups will be discussed first
post which Rings and Fields will be discussed.

A group G, denoted by {G, ·}, is a set of elements with a
binary operation denoted by ‘·’ that associates to each ordered
pair (a,b) of elements in G an element (a · b) in G, such that
axioms A1 – A4 are followed. Let us go ahead to express these
axioms one by one.

1. A1: Closure: If a and b belong to G, then a · b is also in G.

2. A2: Associative: a · (b · c) = (a · b) · c for all a, b, c in G.

3. A3: Identity element: There is an element e in G such that
a · e = e · a = a for all a in G.

4. A4: Inverse element: For each a in G there is an element a`
in G such that a · a` = a` · a = e. A group is an Abelian
group if it satisfies A5 also in addition to A1-A4.

5. A5: Commutative: a · b = b · a for all a, b in G.

Proceedings of the World Congress on Engineering 2010 Vol I
WCE 2010, June 30 - July 2, 2010, London, U.K.

ISBN: 978-988-17012-9-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2010

We define exponentiation within a group as repeated
application of the group operator, so that a^3 = a · a · a. We
also define a^0 = e (which is an identity element) and a^n =
(a`)^n. A group G is cyclic if every element of G is a power of
a^k (k is an integer) of a fixed element a of G. A cyclic group
is always Abelian and may be of finite/infinite elements.

A ring R, denoted by {R, +, X} is a set of elements with
two binary operation called addition and multiplication, such
that for all a, b and c in R the following axioms are obeyed
apart from A1-A5.

6. M1: Closure under multiplication: If a and b belong to R,
then ‘ab’ is also in R.

7. M2: Associativity of multiplication: a(bc) = (ab)c for a, b
and c in R.

8. M3: Distributive laws: a(b + c) = ab + ac for all a, b and c
in R. Similarly, (a + b)c = ac + bc for all a, b and c in R.

In essence, a ring is a set wherein we can do addition (and
hence subtraction) and multiplication without leaving the set.

A ring is said to be commutative if it satisfies M4 also.

9. M4: Commutative of multiplication: ab = ba for all a, b in
R.

A field F, denoted by {F, +, X} is a set of elements with
two binary operations called addition and multiplication such
that for all a, b and c in F, A1-A5 and M1-M7 are obeyed
where M5-M7 are stated below.

10. M5: Multiplicative Identity: There is an element 1 in R
such that a1 = 1a = a for all a in R.

11. M6: No zero divisors: If a and b are in R and ab = 0, then
either a = 0 or b = 0.

12. M7: Multiplicative inverse: For each a in F, except 0, there
is an element a^(-1) in F such that a(a^(-1)) = (a^(-1))a =
1.

In essence, a field is a set in which we can do addition,
subtraction, multiplication and division (a/b = a(b^(-1)))
without leaving the set. The figure 1 here represents Group,
Ring and Field in set relationship. Having described the
algebraic concepts, we can associate the elements of such sets
as requirements of a software system and the results of
operations on set elements as system behaviour. The result of
an operation of addition of two requirements can be described
as results of requirements following each other with no overlap
in time. The result of an operation of multiplication of
requirements can be called as a result of meeting the two
requirements simultaneously in terms of system behaviour
(More explicably, we can call a multiplied by b as requirement
a is yet being met by the system and b gets triggered).
Similarly, other operations can be thought of.

Figure 1: Basic categorization of Group, Ring and Field

The behaviour of a system should also be expressible as
lying under groups, rings or fields under a set of requirements.
This will help us in identifying the systems in various levels of
risk proneness. Closure of meeting any two requirements under
any operation can be whether such an operation can be met
while remaining in a set of defined operations (or expected
system behaviors)(A1). Associativity can hold when a third
requirement is to be met while two other requirements are
already in progress under some defined operation and the result
is same (in terms of system behaviour) even if we change the
order of triggering requirements for the same operation (A2).
Identity element in requirements can be an operation which
does not affect/disturb an already ongoing operation (for a
triggered requirement) when coupled with every other
requirement (e.g. LCD light gets switched on whenever we
touch keypad for any triggering any function in a mobile phone
(A3). Inverse element in requirements can be triggering a
requirement which when applied to any particular
requirement(s) under a pre-defined operation would switch the
system back to standby state (i.e. ability to abort a given
operation without the system getting hanged or
malfunctioned)(A4). Commutativity can be defined as the same
result (in terms of system behaviour) for meeting the two
requirements under a defined operation irrespective of the order
of triggering those two requirements (A5). Similarly, other
axioms can be defined. But such definitions would depend on
the context of the system and requirements.

Group

Abelian Group

 Ring

 Commutative Ring

 Field

Proceedings of the World Congress on Engineering 2010 Vol I
WCE 2010, June 30 - July 2, 2010, London, U.K.

ISBN: 978-988-17012-9-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2010

The figure 2 depicts the case of addition of three
requirements A, B and C. Herein, the states W, X , Y and Z can
be the same state or different ones. For example, W=X=Y=Z if
the system is expected to get back to the same state (e.g.
standby state) after meeting requirement A or B or C.

Figure 2: Addition of A, B and C

The figure 3 depicts the case wherein a second requirement
is triggered while the first one is yet to complete. Here again,
the states W, X and Y can be the same state or different ones.
The result (i.e. system behaviour) of this use case can be
thought of as multiplication of A and B. Also, please mind the
transitory state T when B gets triggered. There should be
enough system resources to, at least, register and later process
(if not start processing with immediate effect) the triggered
requirement B.

 Figure 3: Multiplication of A and B

The figure 4 depicts the case of the system behaviour for
the algebraic expression: A· B+C. Here too, the states W, X, Y
and Z can be the same state or different ones.

 Figure 4: Expression A· B+C

III. CONCLUSION AND FUTURE SCOPE

We have to keep in mind that the set of FRs (Functional
requirements) is not mutually exclusive from NFRs (Non
Functional requirements). If we can describe the requirements
and system behavior (at some level of abstraction), we can use
specification languages (based on logic) for automated
reasoning and analysis. This would help us in better
predictability of system’s behavior. Exemplifying, deontic
logic we can describe permissions (and obligations) while
temporal and linear logic can well formalize timing information
and use of resources, respectively. This approach can be well
extended beyond embedded systems to networks and even
social networking sites (where in a lot ways data given by the
user and collected by the site can be subjected to distributed
usage control) [6, 7, 8]. If used for distributed usage control,
the concept can lend a mathematical modeling means to
privacy, data control and usage [9, 10].

However, a lot has to be answered and formalized in this
approach. This would depend upon the context of system, the
extent to which any requirement can be aborted after being
triggered (like in case of safety critical systems), whether a big
requirement can be broken into a number of individual
requirements (while not forgetting their dependence or
independence) and to what extent, etc. The scheduling of
various resources for requirements (or sub-requirements) and
the determination whether a requirement (or a sub-requirement)
is mutually exclusive is also possible using this approach.
However, one major challenge would be to define the
operations and system behaviour in logical (mathematical)
terms.

IV. ACKNOWLEDGMENT

We are thankful to Mr. Allan Frederiksen, the Head of
GERAN Radio Software at Nokia R&D Bangalore, for his co-
operation in letting us bring the paper in the current form. We
are also obliged to Nokia R&D GERAN team at Bangalore for
useful comments and discussions with respect to the
employability of this paper’s concepts for Nokia phones.

REFERENCES
[1] G. Hogben, “Security Issues and Recommendations for

 Online Social Networks,” ENISA, Tech. Rep., October

2007.

[2] W. Stallings, Cryptography and network security: principles

and practice. Prentice Hall, 4 edition, November 2005.

[3] Simone Fisher Hubner. “IT-Security and Privacy: Design

 and Use of Privacy-Enhancing Security Mechanisms.”

 Springer, 1 edition, June 15 2001.

[4] Russel, D, Gangemi, G.T., “Computer Security

Basics”, O’Reilly, 1991.

[5] RFC 2828, Internet Security Group. http://www.ietf.org/rfc/rfc2828.txt.

[6] A. Acquisti and R. Gross, “Imagined Communities: Awareness,
Information Sharing, and Privacy on the Facebook,” in Privacy
Enhancing Technologies Workshop (PET), Robinson College,
Cambridge, United Kingdom, June 2006.

[7] L. Edwards and I. Brown, “Data Control and Social Networking:

Irreconcilable Ideas?” Harboring data: Information security, law and the
corporation, A. Matwyshyn, ed., Stanford University Press, 2009.

Proceedings of the World Congress on Engineering 2010 Vol I
WCE 2010, June 30 - July 2, 2010, London, U.K.

ISBN: 978-988-17012-9-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2010

[8] S. Weiss, “The Need for a Paradigm Shift in Addressing Privacy Risks
in Social Networking Applications,” The Future of Identity in the
Information Society, 17th June 2008.

[9] M. Hilty, D. Basin, and A. Pretschner, “Distributed Usage Control”,
2006.

[10] M. Hilty, D. Basin, and A. Pretschner. “On obligations.” In Proc.
ESORICS, pages 98-117, 2005.

Proceedings of the World Congress on Engineering 2010 Vol I
WCE 2010, June 30 - July 2, 2010, London, U.K.

ISBN: 978-988-17012-9-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2010

