
 
 

 

 
Abstract — This paper proposes optimization measures for 

assessing compromise solutions in multi-response problems that have 
been formulated in the Response Surface Methodology framework. 
The measures take into account the desired properties of responses at 
optimal variable settings, namely, the bias, quality of predictions and 
robustness, providing relevant information to the analyst that allows 
achieving solutions of interest and feasible in practice. Two examples 
from the literature show the utility of the proposed measures. 
 

Index Terms — Desirability, Loss function, Variance, Response 
Surface, Robustness.  
 

I. INTRODUCTION 

Optimization theory is a research field that has been 
expanding in all areas of applied mathematics, engineering, 
medicine, economics and other sciences at an astonishing rate 
during the last few decades. New algorithms and 
methodologies have been developed and its diffusion into 
various disciplines has proceeded at a rapid pace. To date, 
researchers are paying great attention to hybrid approaches to 
avoid premature algorithm convergence toward a local 
maximum or minimum and reach the global optimum in 
problems with multiple objectives [1]. The issue is that the 
level of computational and mathematical or statistical 
expertise required for using those algorithms or methodologies 
and solving such problems successfully is significant. This 
makes such sophisticated tools hard to adopt, in particular, by 
practitioners [2]-[3].  

A strategy widely used for optimizing multiple objectives 
(multiresponses) in the Response Surface Methodology (RSM) 
framework consists of converting the multiresponses into a 
single (composite) function followed by its optimization, 
using either the generalized reduced gradient or sequential 
quadratic programming algorithms available in the popular 
Microsoft Excel® (solver add-in) and Matlab® (fmincon 
routine), respectively. To form that composite function, the 
desirability function-based and loss function-based methods 
are the most popular among practitioners.  

The existing methods use distinct composite functions to 
provide indication about how close the response values are 
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from their target. However, those functions may give different 
values for the same solution, which is a relevant shortcoming 
as may confound the analyst and make difficult the task of 
assigning priorities (weights) to responses. So, this paper aims 
at proposing optimization performance measures with a 
threefold purpose:  

I. Provide relevant information to the analyst so that he/she 
may achieve compromise solutions of interest if an 
optimization method which does not consider the 
responses’ variance level and responses’ correlation 
information is used; 

II. Help the analyst in evaluating the feasibility of a 
compromise solution by assessing its bias (responses 
deviation from their target), quality of predictions 
(variance of the predicted responses) and robustness 
(variance due to uncontrollable variables) separately; 

III. Allow evaluating the method’s solutions that cannot be 
compared directly due to the different approaches 
subjacent to those methods, for example, loss function-
based and desirability function-based methods.  

The remainder of the paper is organized as follows: the 
following section presents a review of the selected methods. 
Then optimization measures are proposed. The next section 
includes two examples from the literature to show the 
usefulness of the optimization measures. The subsequent 
section discusses the results. Conclusions are presented in the 
last section.  

 

II. METHODS REVIEW 

The variety of real-life problems requiring the consideration 
of multiple objectives and practitioners’ desire to propose 
enhanced techniques using recent advancements in 
mathematical optimization, scientific computing and computer 
technology make the multiresponse optimization an active 
research field. A review on existing methods for simultaneous 
optimization of multi-responses in the RSM framework, which 
is thoroughly discussed by Myers et al. [4]-[5], is provided in 
[6]-[7]. Fogliato [8] provides an extensive list of references 
grouped according to methods theoretical framework. In 
practice, the desirability function-based and loss function-
based methods are the most popular among practitioners who 
look for optimum variable settings for the process and product 
while considering multiple responses simultaneously.  

A. Desirability-based methods 

The desirability-based methods are easy to understand, 
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flexible for incorporating the decision-maker’s preferences 
(priority to responses), and the most popular of them, the so-
called Derringer and Suich’s method [9], or modifications of it 
[10], is available in many data analysis software packages. 
However, to use this method the analyst needs to specify the 
values of four shape parameters (weights). This is not a simple 
task and makes an impact on the optimal variable settings 
[11]. To surmount this and other limitations, in [12] is 
proposed an alternative method that, under the assumptions of 
normality and homogeneity of error variances, requires 
minimum information from the user. That desirability-based 
method, proposed by Cheng et al. [12], is very easy to 
understand and implement in the readily available Microsoft 
Excel-Solver tool and, in addition, requires less cognitive 
effort from the analyst. The user only has to assign values to 
one type of shape parameters (weights), which is a relevant 
advantage over the extensively used Derringer and Suich’s 
method.  

Ch’ng et al. [12] suggested individual desirability functions 
of the form 
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where 20  d  and ŷ  represents the response´s model with 

upper and lower bounds defined by U and L, respectively. The 
global desirability (composite) function is defined as 
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where  iid   is the value of the individual desirability 

function i at the target value i , ie  is the weight (degree of 

importance or priority) assigned to response i, p is the number 

of responses and  


p
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1. The aim is to minimize D.  

Although Ch’ng et al. illustrate their method only for 
Nominal-the-Best (NTB) response type, in this paper the 
Larger-the-Best (LTB) and Smaller-the-best (STB) response 
types are also considered. In these cases,  ii Ud  and  ii Ld  

are used in Equation 2 instead of  iid  , under the assumption 

that it is possible to establish specification limits U and L to 
those responses. Note that Ch’ng et al.’s method neither 
considers the quality of predictions nor the robustness. 

B. Loss function-based methods 

The loss function approach uses a totally different idea 
about the multi-response optimization by considering 
monetary aspects in the optimization process, and is very 
popular among the industrial engineering community. Unlike 
the above-mentioned desirability-based methods, there are loss 
function-based methods that consider the responses’ variance 
level and exploit the responses’ correlation information, which 
is statistically sound. Examples of those methods were 
introduced in [13]-[14]. 

Vining [13] proposed a loss function-based method that 
allows specifying the directions of economic importance for 
the compromise optimum, while seriously considering the 
variance-covariance structure of the expected responses. This 
method aims at finding the variable settings that minimize an 
expected loss function defined as  
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where y xˆ )( is the variance-covariance matrix of the 

predicted responses at x and C is a cost matrix related to the 
costs of non-optimal design. If C is a diagonal matrix then 
each element represents the relative importance assigned to 
the corresponding response. That is, the penalty (cost) 
incurred for each unit of response value deviated from its 
optimum. If C is a non-diagonal matrix, the off-diagonal 
elements represent additional costs incurred when pairs of 
responses are simultaneously off-target. The first term in 
Equation 3 represents the penalty due to the deviation from the 
target; the second term represents the penalty due to the 
quality of predictions. 
Lee and Kim [14] put emphasis on reducing bias and 
improving robustness. They proposed minimizing an expected 
loss defined as  
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where ic  and ijc  represent loss coefficients, 2ˆi  and ij̂  are 

elements of the response’s variance-covariance matrix at x 
 y x )( )( . Note that the key difference between Equations 3 

and 4 is that the later uses the variance-covariance structure of 
the responses rather than the variance-covariance structure of 
the predicted responses.  
 

III. MEASURES OF OPTIMIZATION PERFORMANCE 

To evaluate the feasibility of compromise solutions in 
multiresponse problems, the analyst needs to have information 
about the solution’s properties at “optimal” variable settings, 
namely, the bias and variance. In fact, responses at some 
variable settings may have considerable variance due to the 
uncertainty in the regression coefficients of predicted 
responses and sensitivity of responses to uncontrollable 
variables.  

In the RSM framework few authors have addressed 
explicitly the evaluation of response’s properties to the extent 
that it deserves. Their focus is only in the output of the 
objective function they use. Authors that compare the 
performance of several methods using optimization 
performance measures are Lee and Kim [14], Ko et al. [15] 
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and Xu et al. [16]. While in [14]-[15] the terms or components 
of the objective function are used for comparing the results of 
loss function-based methods in terms of the desired response’s 
properties, in [16] several optimization performance measures 
to compare only the bias of methods built on different 
approaches are used. The optimization measures used in [14]-
[15] require the definition of a cost matrix, which is not easily 
defined or readily available. The shortcoming in the 
optimization measures used in [16] is that they do not consider 
the response’s dimension and type. In fact, for comparing 
method’s results it is necessary considering the responses’ 
dimension, responses’ type and the statistical properties of 
methods used. Multi-response optimization methods may 
differ in terms of statistical properties and optimization 
schemes so the comparison of method´s solutions in a 
straightforward manner may not be possible. Moreover, each 
method has its own merits and how good its solution is may 
depend on either economical and technical issues or decision-
maker’s preference. In practice, divergent interests lead to 
different evaluations of method’s solution so the responses’ 
dimension and type cannot be ignored. 

With the aim at providing useful information for analyst or 
decision-maker concerning to response’s properties, three 
optimization measures are suggested to assess those properties 
separately. The measures can guide the analyst during the 
optimization process and to help him/her in achieving a 
solution of interest, even if quality of predictions and 
robustness are important issues in practice. Moreover, they 
may also serve to evaluate the solutions obtained from 
different methods and help the practitioner in making a more 
informed decision when he/she is interested in choosing a 
method for optimizing multiple responses.  

To assess the method’s solutions in terms of bias we 
suggest an optimization measure that considers the response 
types, response’s specification limits and deviation of all 
responses from their target. This measure, named cumulative 
bias (Bcum), is defined as 
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where *ˆiy  represents the estimated response value at “optimal” 

variable settings and W is a parameter that takes into account 
the specification limits and response type. This parameter is 
defined as follows: )/(1 LUW   for STB- and LTB-type 

responses; )/(2 LUW   for NTB type responses.  

The cumulative bias gives an overall result of the 
optimization process instead of focusing on the value of a 
single response, what avoids making unreasonable decisions 
in some cases [17]. To control the bias of each response, the 
practitioner may use the individual bias (Bi) defined as 
 

iiii yWB  *ˆ          (6) 

 
As Bi and Bcum are dimensionless, analyst does not have to 

worry with dimensional consistency of responses. These 

measures take values greater than or equal to zero, but the 
most favorable is the zero value.  

To assess method’s solutions in terms of quality of 
predictions is proposed a measure defined as 
 

  







j

TT
j xXQXxtraceQoP

11       (7) 

 
where xj is the subset of independent variables consisting of 
the Kx1 vector of regressors for the i-th response with N 
observations on Ki regressors for response, X is an NpxK block 
diagonal matrix and NQ    . An estimate of   is 

Nee j
T
jij /ˆˆˆ  , where ê is the residual vector from the OLS; IN 

is an identity matrix and  represents the Kronecker product. 
To make   dimensionless when responses are in different 
units, this matrix is multiplied by matrix , whose diagonal 

and non-diagonal elements are defined as 2)/(1 iiii LU  , 

and ))(/(1 jjiiij LULU  , respectively. 

Note that QoP is defined under the assumption that 
Seemingly Unrelated Regression (SUR) method is employed 
to estimate the regression models (response surfaces) as it 
yields regression coefficients at least as accurate as those of 
other popular regression techniques, namely the ordinary and 
generalized least squares [18]-[19]. 

The measure for assessing the method’s solutions in terms 
of robustness is defined as  

 

Rob = trace 



 y

x)(         (8) 

 
where  y x)(  represents the variance-covariance matrix of the 

(true) responses. Note that replications of the experimental 
runs are required for assessing the solution’s robustness and 
the lower Rob value is, the lower the response’s variance will 
be. 

IV. EXAMPLES 

Two examples from the literature illustrate the utility of the 
proposed performance measures. The first one considers a 
case study where the quality of prediction is the adverse 
condition. In this example the methods proposed by Ch’ng et 
al. [12] and Vining [13] are used. In the second one the 
adverse condition is the robustness, and the methods proposed 
by Ch’ng et al. [12] and Lee and Kim [14] are used.  

Example 1: The responses specification limits and targets 
for the percent conversion ( 1y ) and thermal activity ( 2y ) of a 

polymer are the following: 00.80ˆ1 y  with 10011 U ; 

00.60ˆ00.55 2  y  with 50.572  . Reaction time (x1), 

reaction temperature (x2), and amount of catalyst (x3) are the 
control factors. According to Myers and Montgomery [20], the 
objective was to maximize the percent conversion and achieve 
the nominal value for the thermal activity. A central composite 
design with six axial and six center points, with 
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682.1682.1  ix , was run to generate the data. The 

predicted responses for the responses by using SUR method 
are as follows: 
 

1ŷ  = 81.09 + 1.03 1x  + 4.04 2x  + 6.20 3x  - 1.83 2
1x  + 2.94 2

2x  

- 5.19 2
3x  + 2.13 21xx  + 11.38 31xx  - 3.88 32 xx  

2ŷ  = 59.85 + 3.58 1x  + 0.25 2x  + 2.23 3x  - 0.83 2
1x  + 0.07 2

2x  

- 0.06 2
3x  - 0.39 21xx  - 0.04 31xx  + 0.31 32 xx  

 
The model of the thermal activity includes some 

insignificant regressors ( 2x , 2
1x , 2

2x , 2
3x , 21xx , 31xx , 32xx ), 

so the predicted response has a poor quality of prediction. This 
means that thermal activity will have a variance as larger as 
farther from the origin the variable settings are. The variance-
covariance matrix is estimated as 

 














55.155.0

55.012.11ˆ . 

 
Regarding the results, Table I shows that the global 

desirability function (D) yields different values for the same 
response values (cases I and III). This is not desirable or 
reasonable and may confound analysts who are focused on D 
value for making decisions. In contrast, the Bcum remains 
unchanged, as it is expectable in these instances. By using Bcum 
the analyst can easily perceive whether the changes he/she 
made in the weight values are either favorable or unfavorable 
in terms of response values. When Bcum increases, this means 
that the value of some response(s) is, undesirably, farther from 
its target, as it is the case of 2ŷ  in the Vining’s solution. 

In terms of QoP the differences between cases I and III are 
negligible. Case II serves to illustrate that the analyst can 
distinguish solutions with larger variability from other(s) with 
smaller variability looking at QoP value. A small difference 
exists between Vining’s solution and both cases I and III, 
because x1 and x2 values are closer from the origin in Vining’s 
solution.  

This example shows that the proposed measures give better 
indications (results, information) to the analyst and can help 
him/her in achieving feasible solutions even if the quality of 
predictions is an adverse condition.  

Example 2: Lee and Kim [14] assumed that the fitted 
response functions for process mean, variance and covariance 
for two quality characteristics are as follows: 
 

1ŷ  = 79.04 + 17.74 1x  + 0.62 2x  + 14.79 3x  - 0.70 2
1x  - 10.95

2
2x  - 0.10 2

3x  - 5.39 21xx  + 1.21 31xx  - 1.79 32 xx  

1̂  = 4.54 + 3.92 1x  + 4.29 2x  + 1.66 3x  + 1.15 2
1x  + 4.40 2

2x  +

0.94 2
3x  + 3.49 21xx  + 0.74 31xx  + 1.19 32 xx  

2ŷ  = 400.15 - 95.21 1x  - 28.98 2x  - 55.99 3x  + 20.11 2
1x  + 

26.80 2
2x  + 10.91 2

3x  + 57.13 21xx  - 3.73 31xx  - 10.87 32 xx  

2̂  = 26.11 - 1.34 1x  + 6.71 2x  + 0.37 3x  + 0.77 2
1x  + 2.99 2

2x  -

0.97 2
3x  - 1.81 21xx  + 0.41 31xx  

12̂  = 5.45 - 0.77 1x  + 0.16 2x  + 0.49 3x  - 0.42 2
1x  + 0.50 2

2x  - 

0.35 2
3x  - 0.63 21xx  + 1.13 31xx  - 0.30 32 xx  

 

Table I – Results: example 1 
 Ch’ng et al. 

Vining 
case I case II case III 

Weights (0.45, 0.55) (0.50, 0.50) (0.60, 0.40) 












500.0025.0

025.0100.0

 xi 
(-0.540, 1.682, -

0.602) 
(-1.682, 1.682, 

-1.059) 
(-0.538, 1.682, -

0.604) 
(-0.355, 1.682, 

-0.468) 

iŷ  (95.19, 57.50) (98.04, 55.00) (95.19, 57.50) (95.24, 58.27)

Result D=0.22 D=0.35 D=0.29 E(Loss)=3.86 
 Bcum 0.24 1.10 0.24 0.55 
 Bi (0.24, 0.00) (0.10, 1.00) (0.24, 0.00) (0.24, 0.31) 
 QoP 0.26 0.35 0.26 0.21 

 
In this example it is assumed that the response’s 

specifications are 60ˆ1 y  with 10011 U  and 500ˆ2 y  

with 30022 L , subject to 11  ix . 

Regarding the results, Table II shows that the loss function 
proposed by Lee and Kim yields different expected loss values 
for similar solutions (cases I and II). In contrast, the Bcum value 
remains unchanged in similar solutions, namely in case I, II 
and Ch’ng et al.’s solution, confirming its utility for assessing 
compromise solutions for multi-response problems apart from 
the method used. Case III serves to illustrate that the analyst 
can recognize solutions with larger variability due to 
uncontrollable factor (case III) from others more robust (case 
I, II and Ch’ng et al.’s solution) looking at Rob value. Note 
that Ch’ng et al.’s method yields a solution similar to both 
cases I and II when appropriate weights are assigned to 2ŷ  

and 2̂ , remaining unchanged (equal to 0.25) the weights for 

1ŷ  and 1̂ . 

This example confirms that the proposed measures give 
better information to the analyst and can help him/her in 
achieving feasible solutions even if the robustness is an 
adverse condition. 
 

Table II – Results: example 2 
 Lee and Kim 

Ch’ng et al. 
case I case II Case III 

Weights (1, 1, 1) (0.3, 0.5, 0.02) (0.8, 0.3, 0.1) 
(0.25, 0.25, 
0.15, 0.35) 

 xi 
(0.79, -0.76, 

1.00) 
(0.80, -0.77, 

1.00) 
(1.00, -1.00, -

0.43) 
(0.80, -0.75, 

1.00) 

iŷ  (97.86, 301.40) (98.06, 300.32) (74.22, 346.45) 
(98.18, 
300.00) 

Var-cov
(7.80, 22.96, 

6.39) 
(7.84, 22.98, 

6.39) 
(5.98, 23.12, 

4.35) 
(7.86, 22.99, 

6.38) 
Result E(Loss)=598.1 E(Loss)=283.7 E(Loss)=3395.8 D=0.53 
Bcum 1.76 1.75 2.39 1.75 

Bi 
(0.05, 0.78, 0.01, 

0.92) 
(0.05, 0.78, 
0.00, 0.92) 

(0.64, 0.59, 
0.23, 0.92) 

(0.05, 0.79, 
0.00, 0.92) 

Rob 0.053 0.053 0.036 0.053 
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V. DISCUSSION 

As noted in [21], the optima are stochastic by nature, and 
understanding the variability of the true and predicted 
responses is a critical issue for the practitioners. Thus, the 
assessment of the responses’ variance level and correlation 
information separately, in addition to the variance of expected 
responses at “optimal” variable settings, provide the required 
information for the analyst evaluating a compromise solution 
for multi-response optimization problems. 

The previous examples show that the expected loss and 
desirability functions give erroneous information to the 
analyst, because those measures yield different results in cases 
where the solutions are equal or have slightly changes in the 
response values. This is a relevant shortcoming, which is due 
to the different weights or priorities assigned to responses that 
are considered in the composite function. In practice, if the 
analyst only focuses on the result of the composite function 
used for making decisions he/she may ignore a solution of 
interest or be confounded about the directions for changing 
weights or priorities to responses due to that erroneous 
information. By using the proposed measures the analyst does 
not have to worry with the reliability of the information as 
they do not depend on priorities assigned to responses. By this 
reason, the proposed measures may also serve to compare the 
performance of methods that use different approaches, for 
example, between desirability function-based methods and 
loss function-based methods, and between methods structured 
under the same approach but that use different composite 
functions, as it is the case of Derringer and Suich’s method, 
where the composite function is a multiplicative function, and 
Ch’ng et al.’s method, where the composite function is an 
additive function.  

From a theoretical point of view, methods that consider the 
responses’ variance level and exploit the responses’ 
correlation information may lead to solutions that are more 
realistic when the responses have either significantly different 
variance levels or are highly correlated [15]. However, the 
previous examples show that the proposed measures can 
provide useful information to the analyst so that he/she 
achieves compromise solutions with desirable properties at 
“optimal” settings by using methods that consider or do not 
consider the variance-covariance structure of responses. 
Nevertheless, note that points in non-convex response surfaces 
cannot be captured by weighted sums like those represented 
by the objective functions of the methods reviewed in this 
paper. Messac et al. [22] present theoretical details on this 
issue. 

VI. CONCLUSIONS 

Low bias and minimum variance are desired response’s 
properties at optimal variable settings in a multiresponse 
optimization problem. This article proposes three optimization 
measures to facilitate the assessment of compromise solutions 
achieved to those problems in terms of the desired response’s 
properties that can be utilized with the existing methods. The 
proposed measures can be easily implemented by analysts, 

provide guidance to practitioners in selecting appropriate 
weights to responses and allow assessing separately the bias, 
quality of predictions and robustness of the compromise 
solutions. This is useful as compromise solutions where some 
responses are more favorable than others in terms of bias, 
quality of predictions or robustness may exist. In these 
instances, the analyst has relevant information to make a 
decision based on his/her preference or on economical and 
technical considerations. 
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