
 
 

 

  
Abstract— The traditional manufacturing control systems 

are often lacking in terms of the capabilities of responsiveness, 
flexibility, robustness and re-configurability. To reduce cost and 
increase flexibility, a reconfigurable Component Based (CB) 
automation approach is proposed in this paper. The research 
work presented in this paper is focused on communicating 
embedded device based components using the application of 
Ethernet and Service-Oriented Architectures (SOAs). This 
approach has the potential to give comparatively increased 
flexibility, and lower costs to manage and redesign individual 
components in comparison with traditional automation systems. 
A novel implementation of Web Services (WS) enabled 
automation using a component-based design approach for 
distributed peer to peer automation systems is outlined in this 
paper.  
 

Index Terms—Component Based Systems, Distributed 
Automation Systems, Reconfigurability, Assembly Automation, 
SOA and Web Services.  
 

I. INTRODUCTION 

In today’s progressively changing global market, 
customers demand low-volume, high-quality, customized 
products. These factors create the need for a short product 
lifecycles, development times, and production lead times; 
compared to traditional manufacturing paradigms [1, 2]. 
Therefore, to provide a solution to this problem, the 
manufacturing industries are rapidly adopting the concept of 
mass customization; and are looking forward modifying their 
manufacturing paradigms and systems toward more flexible, 
adaptive, responsive approaches to meet customer demands 
with improved efficiency. Such a manufacturing environment 
can be realized using the concept of an agile manufacturing 
framework; focusing on a wider perspective of integrating the 
business enterprise and the business architecture with the 
shop-floor automation systems during the product 
development process [3, 4]. In such a manufacturing system, 
the manufacturers distribute intelligence and decision making 
authority as close to the points of action, delivery and sales 
service as possible [5].  
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In recent years, the utilization of Web Services, typically 
based on the use of Ethernet, in the control systems has 
become an emerging approach to reduce technological 
barriers between the shop-floor automation and Enterprise 
systems. Web Services are widely used as a communication 
link in Enterprise systems; thus, the integration of various 
applications especially in pervasive manufacturing 
environments can be made simpler and more cost effective. 
Therefore, this paper presents an implementation framework 
utilizing Web Services with a component-based design 
approach previously developed at Loughborough University 
[6, 7] on PLC-based control devices supported by Schneider 
Electric. The work extends the WS prototype of an industrial 
test rig demonstration system developed at Loughborough 
University to a feasible industrial design of a fully distributed 
control systems.  

 

II. PRESENT STATE-OF-THE-ART 

Initially, Web Services based manufacturing systems have 
been proposed and developed in the main to support remote 
HMI and system diagnostics functionality [9, 10]. However in 
recent years, a number of projects have proposed solutions 
based on an objected-oriented design framework to develop 
modular design software structures for manufacturing 
integration (e.g. OPC UA [8], ESPRIT III OSACA [9], and 
COMPAG [6]). The RIMACS consortium [10] initiated the 
implementation of a WS capability (enabled by Devices 
Profile for Web Services (DPWS)) on the target PLC based 
device control platform. An extensive pilot implementation of 
WS-based control of this type was implemented on the 
SOCRADES project where the authors were involved at 
Loughborough as a consortium member studying 
manufacturing automation.  In this paper, related research 
work is focused on employing Schneider Electric’s Simple 
Terminal Blocks (STBs) as WS-based embedded distributed 
control devices. This work is a part of a research programme 
in progress in the Mechanical and Manufacturing Engineering 
Department of Loughborough University. The work is 
focused on the lifecycle support of distributed automation 
systems by replacing centralized PLC controllers with 
distributed control nodes and a component-based (CB) design 
approach, where the control functionality is embedded into 
the component modules.  

 

III. COMPONENT BASED DESIGN FRAMEWORK 

To meet the challenges mentioned above in section I, a 
distributed automation system is required in which the control 
devices are interconnected with each other using WS 
interfaces (i.e. Device Profile for Web Services-DPWS)            
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[11, 12]. The design and realization of such a system requires: 
a) Architecture, b) Controlling devices with I/O module for 
sensors and actuators, and c) Engineering tools for designing 
and implementing WS based architectures. The architecture 
of current research work is based on the component based 
design approach for the distributed automation system 
presented in [6]. A typical example of this approach is 
depicted in Figure 1; which is a Ford Festo test rig.  This 
replicates functionality, typical in Ford powertrain assembly 
machines.  

In Figure 1, to design a distributed control system using the 
CB approach, the architecture of the assembly machine 
system is categorized in a hierarchical structure: 
Machine-Stations-Components-Elements-Inputs/Output 
sensors. The machine system in Figure 1 comprises 4 stations 
(subsystems); including a hopper unit, buffering unit, 
processing index table unit, and handling arm unit, which are 
linked together via Ethernet communication systems to form 
the completed work process. These subsystems constitute 
various components; containing mechanical units, electrical 
units (sensors, actuator, I/O interface) and control software. In 
current research, the term “component” is defined as the 
constitution of: (1) a controller unit which includes network 
communication, hardware configuration, and control 
application, (2) electronic interface, and (3) physical inputs 
and outputs. Each station is controlled by a corresponding 
controller/control device (STB in current paper), which 
manipulates the actuators to achieve the assigned 
manufacturing tasks. The communication between controllers 
is achieved by network variable exchanges (i.e. state 

information) over the Ethernet. In the CB design approach, 
the component functionalities are represented by the 
element’s state, behavior (i.e. control logic/state transitions), 
operations, and error information, which are encapsulated in 
each controller unit. Considering physical machine 
movement, a machine application is a combination and 
execution of these distributed components depending on the 
defined control logics including the component interaction 
(interlocking) design within the event-driven method. The 
control logics are encapsulated and exposed through WS 
interface of inter-connecting devices.  The full details are 
presented in [13]. 

In the CB design architecture, these components are 
pre-built with the required functional and integration 
capabilities to enable effective composition into instances of 
machines based on the required specification of machine 
end-users. To provide flexibility and reconfigurability, user 
applications are composed by a higher level engineering tool. 
In addition to the CB approach, the control system can be seen 
as a set of mechatronic components with each device 
responsible for a basic operation then the more complex 
manufacturing tasks can be created from the combination of 
basic components [7]. Therefore, the key task to realize such a 
modular system is the design of generic hardware and control 
software components that could be reconfigured to form new 
machine configurations to suit different production types. 
This architecture will be beneficial as it will help enabling 
efficient machine build and re-use of designs in order to 
optimize the machine’s lifecycle across supply chain partners. 

 

Figure 1: Ford Festo rig layout: A distributed CB design of a powertrain assembly machine [13]. 
 

IV. THE AREA OF DEVELOPMENT AND NOVEL 
CONTRIBUTION 

In the Festo test rig shown in Figure 1, web services are 
initially implemented on the Schneider Electric’s Field 
Terminal Blocks (FTBs) installed on the rig. For each station, 
a service provider FTB controls the I/O for that station as 

shown in Figure 2. A separate FTB (or other WS enabled 
controller) acts as a service orchestrator to control all the 
devices in order to achieve the successful completion of a 
machine execution (Figure 2). This orchestrator is the point 
by which the services are invoked in a specific order to ensure 
a specific control of the elements on the test rig.  The 
functionality of these services/elements depends on the 
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combined application specific functionality of the sensors and 
actuators employed. Initially, a request and response 
approach is used to implement Service Oriented Architectures 
(SOAs) using Web Services on this test rig. In order to put the 
system together with this approach, the client of each station 
requests the status of the actuators and sensors from the server 
running on the FTB for device interlocking and operations. 
The server then responses the request by sending state 
message of those elements to the client. When any set of 
conditions meet, the client sends the message to the server for 
device operations. This request-response approach has 
several challenges, as mentioned below: 
� Server down and lost communication conditions due to 
message collision on the server side: This happens as the 
server on the FTB does not have the effective mechanism to 
handle multiple DPWS messages (either outgoing and/or 
incoming messages) at the same time, especially in the request 
and response approach where the network bandwidth is very 
high.       
� Hardware memory size: The flash memory of the FTB 
device (512 kB) and the buffer are not enough to store the 
server applications for more than three components. 
However, for the development of the peer-to-peer 
communication, a large memory and big stack is required.  
� Consistency of the client device lookup on the FTB: This is 
the issue with the development of client-server on the same 
FTB when the client could not look up for the device when its 
application is running on the FTB.  
 

 
 
Figure 2: FTB integration framework employs request -response based 
approach [13]. 
 

To meet these challenges, an enhanced WS based control 
system was sub sequentially implemented on the same test rig.  
This new system was implemented using the STB as the 
distributed controllers, each with a distributed I/O connected 
to its local sensors and actuators. STBs are deployed using a 
fully distributed approach (Figure 3), in which each device 
(STB) has the capability to act both a service invocator and a 
service provider. This eliminates the central orchestrator and 
makes devices to send and receive information from multiple 
devices. This work has been implemented within the 
SOCRADES framework. The WS capability is enabled by 
mean of DPWS protocol for control and monitoring 
automation systems. The intelligent control units are 
distributed to the local machine devices to facilitate the 
execution and monitoring from high level manufacturing 
applications via the service compositions of the orchestration 
engine. The detail of implementation and results are 

published in [13]. The work in this paper is the extension of 
this prototype to fully automation systems as outlined in 
Figure 3. 

 
 
Figure 3: STB integration framework using fully distributed approach. 

 
In Figure 3, the distributed system integration is achieved 

using the peer-to-peer communication between control 
devices as well as manufacturing applications based on 
event-driven approach. The design of WS enabled 
components based on the IEC- 61131 are supported by the 
process engineering tool “ControlBuild” (provided by 
Genesys) [15]. Regarding the design of reconfigurable and 
re-usable control applications, the control application in each 
component is implemented using Function Block Diagram 
(FBD) in ControlBuild. Using these constructs, the internal 
control logic relating to I/O operations can be readily 
configured and reused for the components. The advantages 
and novel aspects of this methodology based on ControlBuild 
and STBs are: 
� Provides graphical user interface, supports integration of 
WS devices and avoids low level coding of WS application.  
� Fully distributed autonomous automation systems with WS 
enabled control devices and interoperable. 
� Peer-to-Peer DPWS based automation system without the 
need of an orchestrator. 
� The system reliability for losing messages and error 
recovery can be addressed and managed (Eventing approach).   
� Open and non vendor specific automation platforms. 
� Considering that the cost of the embedded device is 
becoming cheaper (substantially cheaper than conventional 
devices such as the PLC), the full exploitation of Web 
Services as an open automation platform on low-cost 
embedded devices could yield significant savings within 
automation. Moreover, the software platform in this work is 
applicable to other control platforms, as the application on the 
embedded device contains the same functionality and 
concepts as in the design of control automation. 

 

V. ENABLING WEB SERVICES BASED AUTOMATION DESIGN 
FRAMEWORK 

The core network capability has been implemented with the 
standard DPWS protocol stack. The development of the 
DPWS for a component starts with defining the component 
names, element names, element state variables and operations 
within the Web Services Description Language (WSDL) file. 
In the WSDL description, the WSDL file of one component 
defines all element operations (i.e. execution command, 
element state publication), state variable names, a device 
service name and location. The WSDL file is generated using 
the ControlBuild. It is to be noted that in the implementation 
of the Ford Festo test rig, each component has its own WSDL 
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script for the DPWS application. In the control application 
development, each subsystem (i.e. station) has a 
corresponding STB as a container for the components. Thus, 
each STB is responsible for the operation of multiple 
components within the subsystem. Prior to the deployment of 
the control application in STB, the component behaviour can 
be simulated in the IEC view to support the debugging of the 
DPWS interface and I/O operations. In deployment, the 
device binary code is prepared for the target hardware and the 
WSDL script file for the component is created. The WSDL 
file is used for developing the WS interface so as to interact 
with the WS components on the control system. 

The principal concept created with the dynamic 
deployment (mentioned above) is the WS Component. From 
Control Build, a WS component is a top level Mac with a WS 
interface defined. From a “DPWS point of view”, a WS 
Component is a logical device hosted by a physical device. 
Therefore, this component is able to be discovered / to 
discover other components, has access to the physical devices 
resources (I/Os, counters, etc…), and its comportment is 
managed by the IEC code created in Control Build. Thus, the 
ControlBuild behave both the editor for the application, and 
the base for the whole system. The main advantage of 
ControlBuild is its ability to test each phase of the application 
development cycle without the need to recapture data. This 
helps to eliminate the potential for design errors, save time 
and facilitates the creation of homogenous and coherent 
design databases which are not available with earlier FTB’s. 

 

 
 

Figure 4: Web Services based FESTO test rig integration architecture. 
  

VI. WS AUTOMATION SYSTEM INTEGRATION 

A. System Integration Overview 
The implementation of WS enabled control systems has 

been carried out at Loughborough University under the 
SOCRADES FP6 framework [14] project and in 
collaboration with Schneider Electric; aiming to demonstrate 
the performance of WS in real industrial environments [15]. 
The research work has been implemented on a Ford-Festo 
pneumatically actuated test rig shown in Figure 1. The control 
devices to support the DPWS applications are based on an 
industrial PLC (i.e. Advantys STB Modular Distributed I/O) 
platforms supported by Schneider Electric. To demonstrate 
the WS interoperability on various platforms, the distributed 
control system has been integrated with embedded 
controllers, PC based controls and a HMI (Human Machine 
Interface) system as shown in Figure 4. The system is enacted 

via the DPWS based common WS interface. The peer-to-peer 
communication between STBs is enabled by using the 
server-client concept, where if one STB acts as a server then 
other one will be its client, and the client will invoke the 
server. It is explained in next section. 

 

B. Implementing DPWS Application 
In the CB approach, the component is implemented as 

abstract WS component. Predefined component functionality 
is encapsulated in the target platform (using FBD in 
ControlBuild) and presented as a remote service to other 
interacting devices or higher-level applications (e.g. 
ERP/MES). The operation of the device is therefore via WS 
interfaces. In this case, the alteration of the process/machine 
application is achieved at the service level without changing 
the low-level device code (if the core component behavior 
does not have to be modified). 

A control application defined in ControlBuild will have 
different components defined for server and client 
components. The server component defines the actual 
logic/operation that is to be hosted by the device for a specific 
component on the test rig. This means a service provider and a 
client will invoke a different service defined on other 
component i.e. a service invocator. An application in peer to 
peer fully distributed environment will consist of a server for 
a present component and a client for the other component. A 
WS component can be a server, a client (including events), or 
both at the same time to allow communication between 
interlocking components. A client and its server cannot be 
hosted by the same device. All stations on the test rig 
communicate via this methodology. 

Figure 5 shows the DPWS component fundamentals on the 
embedded controller device. This relates to the first station of 
the test rig consisting of two components i.e. Distribution 
Hopper and Transfer Arm. Distribution hopper further 
consists of three elements with 4 inputs and 1 output shown in 
Figure 5. The elements of the hopper component (i.e. the 
ejector, the magazine sensor, the magazine Xfer sensor) are 
grouped together to form the whole component. The ejector 
has Web Services operations of extending and retracting as 
well as notifying the element current state (Extended/Moving 
Retracted/Retracted/Moving Extended) and the two sensors 
provide the Web Services operation of identifying the 
workpiece availability in the hopper unit (Empty/Full). The 
state transition logic for this component is coded using FBD 
editor in ControlBuild and its corresponding WS interface is 
defined.  

In the implementation of test rig components, each element 
(i.e. sensors and actuators) is enabled with WS functionalities 
(i.e. the ability to command actuators and read sensors). 
These functionalities are interfaced to device input and output 
channels.  Web Services encapsulate the low-level coding of 
operations, monitoring and automated fault diagnosis utilities 
of the component and exposed the functionality to high-level 
management software through a unifying interface supported 
by Web Services interfaces (i.e. DPWS services).  
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Figure 5: WS component interface for Component 1 of Station 1 for the test rig (Server for Distribution Hopper).  
 
 
 
 
 

 
 

Figure 6: Proposed peer-to-peer event driven implementation of Station 1 & 2 of Festo test rig. 
 
 

C. System Operation 
In the test rig demonstration (Figure 1), the WS 

communication provides a way of passing SOAP (Simple 
Object Access Protocol) messages (i.e. XML) between 
addressed locations (e.g. requester, subscriber) over the 
SOAP protocol. The basic principle is described in this 
research by the client/server model. The server acts as the 
service provider/publisher and the client is a service 
requester/subscriber. For event-driven automation systems, 
the Web Services are utilised in the automation system to: 1- 
send and receive the device state notification and 2- 
request/initiate an operation on the device. In sending and 
receiving the device state notification (1), the server acts as an 
event source in terms of sending SOAP messages to the client, 
referred to as an event sink/receiver. In the service invocation 

(2), the server is a service provider to the client (i.e. a 
requester). Based on this client-server functionality, the role 
of manufacturing entities (e.g. Processes, MES, and ERP) can 
be specified. In general, the process and machine is a server to 
integrate MES and ERP applications (clients). It is noted that, 
in the distributed peer-to- peer automation systems, the server 
and the client functionality will coexist within the control 
system (i.e. controllers) to allow the device-to-device 
communication as shown in Figure 6. 

The WS interface to each component is defined by the flow 
of incoming (e.g. requesting I/O operations) and outgoing 
(e.g. publishing state notifications) messages and parameters. 
The control sequence (device behaviour) and I/O operation of 
the component are defined inside the WS component block as 
depicted in Figure 6. In addition, there is no actual (tight) 
binding between interlocking components. The WS 
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components interact through WS-Discovery, Subscribe, and 
Eventing processes. Therefore, the programming complexity 
is substantially reduced. 

The required server component in the control system is 
now known to the client and is ready to proceed with control 
system operation. During the operation, the interaction 
sequence between the server and the client is processed by:  

1. Event server publishes the changing component state 
information sent to the event client/subscriber for a new 
update. 

2. The client responds according to the defined state 
logic/transition conditions. 

3. If the enable function on server is triggered, the server 
sends the requested SOAP message to invoke the specific 
operation on the WS component to trigger the action on the 
I/O channels. 

This sequence runs repeatedly throughout the machine 
cycle. Additionally, the integration at the higher system levels 
is achieved in the similar manner through the implementation 
of WS interfaces to connect to the test rig for system control 
and monitoring. 

 

VII. CONCLUSION AND FUTURE WORK 

In this paper, a WS based automation system using a CB 
design approach is presented. The concept of a Web Services- 
based framework, capable of connecting various 
heterogeneous platforms and diverse equipment so that they 
may be integrated into a unified system and interact in a 
co-operative way, has been outlined in this paper. This 
concept of utilizing the Web Services protocol stack offers the 
potential for manufacturing automation to evolve, enabling a 
new paradigm of open standard, technology neutral and 
interoperability components from various device vendors. 
The development of device descriptions, embedded into the 
component and the driving of system intelligence down to the 
device level, ultimately offers the potential to eliminate the 
need for system integrators to undertake low level 
programming. The focus is on shifted towards building 
higher-level control applications and improving efficiency. 
This work investigates the configurability, and re-usability of 
control systems and seamless integration to business levels, 
thus enabling companies to become more agile and 
collaborative.   

This approach employs DPWS on the control devices, 
which enables the evolution of an open standard for 
manufacturing automation to provide ease of integration and 
interoperability between various device platforms. From the 
perspective of process integration, the manufacturing and 
business applications can integrate with the control system via 
the common DPWS device interface in order to invoke the 
service via the SOAP- XML messages over the network. In 
summary, the integration of the CB design approach with WS 
on automation devices could be utilised not only in the 
automotive manufacturing domain, but also in other domains 
with soft-real time constraints. Further work is in progress to 
improve the I/O response speed, security and the system 
reliability regarding the potential loss of messages and error 
recovery due to the non- deterministic Ethernet network that 
needs to be addressed and managed.  
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