

Abstract— The traditional manufacturing control systems

are often lacking in terms of the capabilities of responsiveness,
flexibility, robustness and re-configurability. To reduce cost and
increase flexibility, a reconfigurable Component Based (CB)
automation approach is proposed in this paper. The research
work presented in this paper is focused on communicating
embedded device based components using the application of
Ethernet and Service-Oriented Architectures (SOAs). This
approach has the potential to give comparatively increased
flexibility, and lower costs to manage and redesign individual
components in comparison with traditional automation systems.
A novel implementation of Web Services (WS) enabled
automation using a component-based design approach for
distributed peer to peer automation systems is outlined in this
paper.

Index Terms—Component Based Systems, Distributed
Automation Systems, Reconfigurability, Assembly Automation,
SOA and Web Services.

I. INTRODUCTION

In today’s progressively changing global market,
customers demand low-volume, high-quality, customized
products. These factors create the need for a short product
lifecycles, development times, and production lead times;
compared to traditional manufacturing paradigms [1, 2].
Therefore, to provide a solution to this problem, the
manufacturing industries are rapidly adopting the concept of
mass customization; and are looking forward modifying their
manufacturing paradigms and systems toward more flexible,
adaptive, responsive approaches to meet customer demands
with improved efficiency. Such a manufacturing environment
can be realized using the concept of an agile manufacturing
framework; focusing on a wider perspective of integrating the
business enterprise and the business architecture with the
shop-floor automation systems during the product
development process [3, 4]. In such a manufacturing system,
the manufacturers distribute intelligence and decision making
authority as close to the points of action, delivery and sales
service as possible [5].

Manuscript received March 18, 2010.
Navjot Kaur is Research Student in Wolfson School of Mechanical &

Manufacturing Engineering, Loughborough University, Loughborough
LE11 3TU (phone: +44 (0)1509 227 545; e-mail: N.Kaur2@lboro.ac.uk).

Robert Harrison is Senior Lecturer with Wolfson School of Mechanical &
Manufacturing Engineering, Loughborough University, Loughborough
(e-mail: R.Harrison@lboro.ac.uk).

Andrew West is Senior Lecturer with Wolfson School of Mechanical &
Manufacturing Engineering, Loughborough University, Loughborough
(e-mail: A.A.West@lboro.ac.uk).

Punnuluk Phaithoonbuathong is Research Associate with Wolfson
School of Mechanical & Manufacturing Engineering, Loughborough
University, Loughborough (e-mail: P.Phaithoonbuathong@lboro.ac.uk).

In recent years, the utilization of Web Services, typically
based on the use of Ethernet, in the control systems has
become an emerging approach to reduce technological
barriers between the shop-floor automation and Enterprise
systems. Web Services are widely used as a communication
link in Enterprise systems; thus, the integration of various
applications especially in pervasive manufacturing
environments can be made simpler and more cost effective.
Therefore, this paper presents an implementation framework
utilizing Web Services with a component-based design
approach previously developed at Loughborough University
[6, 7] on PLC-based control devices supported by Schneider
Electric. The work extends the WS prototype of an industrial
test rig demonstration system developed at Loughborough
University to a feasible industrial design of a fully distributed
control systems.

II. PRESENT STATE-OF-THE-ART

Initially, Web Services based manufacturing systems have
been proposed and developed in the main to support remote
HMI and system diagnostics functionality [9, 10]. However in
recent years, a number of projects have proposed solutions
based on an objected-oriented design framework to develop
modular design software structures for manufacturing
integration (e.g. OPC UA [8], ESPRIT III OSACA [9], and
COMPAG [6]). The RIMACS consortium [10] initiated the
implementation of a WS capability (enabled by Devices
Profile for Web Services (DPWS)) on the target PLC based
device control platform. An extensive pilot implementation of
WS-based control of this type was implemented on the
SOCRADES project where the authors were involved at
Loughborough as a consortium member studying
manufacturing automation. In this paper, related research
work is focused on employing Schneider Electric’s Simple
Terminal Blocks (STBs) as WS-based embedded distributed
control devices. This work is a part of a research programme
in progress in the Mechanical and Manufacturing Engineering
Department of Loughborough University. The work is
focused on the lifecycle support of distributed automation
systems by replacing centralized PLC controllers with
distributed control nodes and a component-based (CB) design
approach, where the control functionality is embedded into
the component modules.

III. COMPONENT BASED DESIGN FRAMEWORK

To meet the challenges mentioned above in section I, a
distributed automation system is required in which the control
devices are interconnected with each other using WS
interfaces (i.e. Device Profile for Web Services-DPWS)

Web Services - Based Control Devices for Future
Generation Distributed Automation Systems

Navjot Kaur, Robert Harrison, Andrew West, and Punnuluk Phaithoonbuathong

Proceedings of the World Congress on Engineering 2010 Vol III
WCE 2010, June 30 - July 2, 2010, London, U.K.

ISBN: 978-988-18210-8-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2010

[11, 12]. The design and realization of such a system requires:
a) Architecture, b) Controlling devices with I/O module for
sensors and actuators, and c) Engineering tools for designing
and implementing WS based architectures. The architecture
of current research work is based on the component based
design approach for the distributed automation system
presented in [6]. A typical example of this approach is
depicted in Figure 1; which is a Ford Festo test rig. This
replicates functionality, typical in Ford powertrain assembly
machines.

In Figure 1, to design a distributed control system using the
CB approach, the architecture of the assembly machine
system is categorized in a hierarchical structure:
Machine-Stations-Components-Elements-Inputs/Output
sensors. The machine system in Figure 1 comprises 4 stations
(subsystems); including a hopper unit, buffering unit,
processing index table unit, and handling arm unit, which are
linked together via Ethernet communication systems to form
the completed work process. These subsystems constitute
various components; containing mechanical units, electrical
units (sensors, actuator, I/O interface) and control software. In
current research, the term “component” is defined as the
constitution of: (1) a controller unit which includes network
communication, hardware configuration, and control
application, (2) electronic interface, and (3) physical inputs
and outputs. Each station is controlled by a corresponding
controller/control device (STB in current paper), which
manipulates the actuators to achieve the assigned
manufacturing tasks. The communication between controllers
is achieved by network variable exchanges (i.e. state

information) over the Ethernet. In the CB design approach,
the component functionalities are represented by the
element’s state, behavior (i.e. control logic/state transitions),
operations, and error information, which are encapsulated in
each controller unit. Considering physical machine
movement, a machine application is a combination and
execution of these distributed components depending on the
defined control logics including the component interaction
(interlocking) design within the event-driven method. The
control logics are encapsulated and exposed through WS
interface of inter-connecting devices. The full details are
presented in [13].

In the CB design architecture, these components are
pre-built with the required functional and integration
capabilities to enable effective composition into instances of
machines based on the required specification of machine
end-users. To provide flexibility and reconfigurability, user
applications are composed by a higher level engineering tool.
In addition to the CB approach, the control system can be seen
as a set of mechatronic components with each device
responsible for a basic operation then the more complex
manufacturing tasks can be created from the combination of
basic components [7]. Therefore, the key task to realize such a
modular system is the design of generic hardware and control
software components that could be reconfigured to form new
machine configurations to suit different production types.
This architecture will be beneficial as it will help enabling
efficient machine build and re-use of designs in order to
optimize the machine’s lifecycle across supply chain partners.

Figure 1: Ford Festo rig layout: A distributed CB design of a powertrain assembly machine [13].

IV. THE AREA OF DEVELOPMENT AND NOVEL
CONTRIBUTION

In the Festo test rig shown in Figure 1, web services are
initially implemented on the Schneider Electric’s Field
Terminal Blocks (FTBs) installed on the rig. For each station,
a service provider FTB controls the I/O for that station as

shown in Figure 2. A separate FTB (or other WS enabled
controller) acts as a service orchestrator to control all the
devices in order to achieve the successful completion of a
machine execution (Figure 2). This orchestrator is the point
by which the services are invoked in a specific order to ensure
a specific control of the elements on the test rig. The
functionality of these services/elements depends on the

Proceedings of the World Congress on Engineering 2010 Vol III
WCE 2010, June 30 - July 2, 2010, London, U.K.

ISBN: 978-988-18210-8-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2010

combined application specific functionality of the sensors and
actuators employed. Initially, a request and response
approach is used to implement Service Oriented Architectures
(SOAs) using Web Services on this test rig. In order to put the
system together with this approach, the client of each station
requests the status of the actuators and sensors from the server
running on the FTB for device interlocking and operations.
The server then responses the request by sending state
message of those elements to the client. When any set of
conditions meet, the client sends the message to the server for
device operations. This request-response approach has
several challenges, as mentioned below:
� Server down and lost communication conditions due to
message collision on the server side: This happens as the
server on the FTB does not have the effective mechanism to
handle multiple DPWS messages (either outgoing and/or
incoming messages) at the same time, especially in the request
and response approach where the network bandwidth is very
high.
� Hardware memory size: The flash memory of the FTB
device (512 kB) and the buffer are not enough to store the
server applications for more than three components.
However, for the development of the peer-to-peer
communication, a large memory and big stack is required.
� Consistency of the client device lookup on the FTB: This is
the issue with the development of client-server on the same
FTB when the client could not look up for the device when its
application is running on the FTB.

Figure 2: FTB integration framework employs request -response based
approach [13].

To meet these challenges, an enhanced WS based control
system was sub sequentially implemented on the same test rig.
This new system was implemented using the STB as the
distributed controllers, each with a distributed I/O connected
to its local sensors and actuators. STBs are deployed using a
fully distributed approach (Figure 3), in which each device
(STB) has the capability to act both a service invocator and a
service provider. This eliminates the central orchestrator and
makes devices to send and receive information from multiple
devices. This work has been implemented within the
SOCRADES framework. The WS capability is enabled by
mean of DPWS protocol for control and monitoring
automation systems. The intelligent control units are
distributed to the local machine devices to facilitate the
execution and monitoring from high level manufacturing
applications via the service compositions of the orchestration
engine. The detail of implementation and results are

published in [13]. The work in this paper is the extension of
this prototype to fully automation systems as outlined in
Figure 3.

Figure 3: STB integration framework using fully distributed approach.

In Figure 3, the distributed system integration is achieved

using the peer-to-peer communication between control
devices as well as manufacturing applications based on
event-driven approach. The design of WS enabled
components based on the IEC- 61131 are supported by the
process engineering tool “ControlBuild” (provided by
Genesys) [15]. Regarding the design of reconfigurable and
re-usable control applications, the control application in each
component is implemented using Function Block Diagram
(FBD) in ControlBuild. Using these constructs, the internal
control logic relating to I/O operations can be readily
configured and reused for the components. The advantages
and novel aspects of this methodology based on ControlBuild
and STBs are:
� Provides graphical user interface, supports integration of
WS devices and avoids low level coding of WS application.
� Fully distributed autonomous automation systems with WS
enabled control devices and interoperable.
� Peer-to-Peer DPWS based automation system without the
need of an orchestrator.
� The system reliability for losing messages and error
recovery can be addressed and managed (Eventing approach).
� Open and non vendor specific automation platforms.
� Considering that the cost of the embedded device is
becoming cheaper (substantially cheaper than conventional
devices such as the PLC), the full exploitation of Web
Services as an open automation platform on low-cost
embedded devices could yield significant savings within
automation. Moreover, the software platform in this work is
applicable to other control platforms, as the application on the
embedded device contains the same functionality and
concepts as in the design of control automation.

V. ENABLING WEB SERVICES BASED AUTOMATION DESIGN
FRAMEWORK

The core network capability has been implemented with the
standard DPWS protocol stack. The development of the
DPWS for a component starts with defining the component
names, element names, element state variables and operations
within the Web Services Description Language (WSDL) file.
In the WSDL description, the WSDL file of one component
defines all element operations (i.e. execution command,
element state publication), state variable names, a device
service name and location. The WSDL file is generated using
the ControlBuild. It is to be noted that in the implementation
of the Ford Festo test rig, each component has its own WSDL

Proceedings of the World Congress on Engineering 2010 Vol III
WCE 2010, June 30 - July 2, 2010, London, U.K.

ISBN: 978-988-18210-8-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2010

script for the DPWS application. In the control application
development, each subsystem (i.e. station) has a
corresponding STB as a container for the components. Thus,
each STB is responsible for the operation of multiple
components within the subsystem. Prior to the deployment of
the control application in STB, the component behaviour can
be simulated in the IEC view to support the debugging of the
DPWS interface and I/O operations. In deployment, the
device binary code is prepared for the target hardware and the
WSDL script file for the component is created. The WSDL
file is used for developing the WS interface so as to interact
with the WS components on the control system.

The principal concept created with the dynamic
deployment (mentioned above) is the WS Component. From
Control Build, a WS component is a top level Mac with a WS
interface defined. From a “DPWS point of view”, a WS
Component is a logical device hosted by a physical device.
Therefore, this component is able to be discovered / to
discover other components, has access to the physical devices
resources (I/Os, counters, etc…), and its comportment is
managed by the IEC code created in Control Build. Thus, the
ControlBuild behave both the editor for the application, and
the base for the whole system. The main advantage of
ControlBuild is its ability to test each phase of the application
development cycle without the need to recapture data. This
helps to eliminate the potential for design errors, save time
and facilitates the creation of homogenous and coherent
design databases which are not available with earlier FTB’s.

Figure 4: Web Services based FESTO test rig integration architecture.

VI. WS AUTOMATION SYSTEM INTEGRATION

A. System Integration Overview
The implementation of WS enabled control systems has

been carried out at Loughborough University under the
SOCRADES FP6 framework [14] project and in
collaboration with Schneider Electric; aiming to demonstrate
the performance of WS in real industrial environments [15].
The research work has been implemented on a Ford-Festo
pneumatically actuated test rig shown in Figure 1. The control
devices to support the DPWS applications are based on an
industrial PLC (i.e. Advantys STB Modular Distributed I/O)
platforms supported by Schneider Electric. To demonstrate
the WS interoperability on various platforms, the distributed
control system has been integrated with embedded
controllers, PC based controls and a HMI (Human Machine
Interface) system as shown in Figure 4. The system is enacted

via the DPWS based common WS interface. The peer-to-peer
communication between STBs is enabled by using the
server-client concept, where if one STB acts as a server then
other one will be its client, and the client will invoke the
server. It is explained in next section.

B. Implementing DPWS Application
In the CB approach, the component is implemented as

abstract WS component. Predefined component functionality
is encapsulated in the target platform (using FBD in
ControlBuild) and presented as a remote service to other
interacting devices or higher-level applications (e.g.
ERP/MES). The operation of the device is therefore via WS
interfaces. In this case, the alteration of the process/machine
application is achieved at the service level without changing
the low-level device code (if the core component behavior
does not have to be modified).

A control application defined in ControlBuild will have
different components defined for server and client
components. The server component defines the actual
logic/operation that is to be hosted by the device for a specific
component on the test rig. This means a service provider and a
client will invoke a different service defined on other
component i.e. a service invocator. An application in peer to
peer fully distributed environment will consist of a server for
a present component and a client for the other component. A
WS component can be a server, a client (including events), or
both at the same time to allow communication between
interlocking components. A client and its server cannot be
hosted by the same device. All stations on the test rig
communicate via this methodology.

Figure 5 shows the DPWS component fundamentals on the
embedded controller device. This relates to the first station of
the test rig consisting of two components i.e. Distribution
Hopper and Transfer Arm. Distribution hopper further
consists of three elements with 4 inputs and 1 output shown in
Figure 5. The elements of the hopper component (i.e. the
ejector, the magazine sensor, the magazine Xfer sensor) are
grouped together to form the whole component. The ejector
has Web Services operations of extending and retracting as
well as notifying the element current state (Extended/Moving
Retracted/Retracted/Moving Extended) and the two sensors
provide the Web Services operation of identifying the
workpiece availability in the hopper unit (Empty/Full). The
state transition logic for this component is coded using FBD
editor in ControlBuild and its corresponding WS interface is
defined.

In the implementation of test rig components, each element
(i.e. sensors and actuators) is enabled with WS functionalities
(i.e. the ability to command actuators and read sensors).
These functionalities are interfaced to device input and output
channels. Web Services encapsulate the low-level coding of
operations, monitoring and automated fault diagnosis utilities
of the component and exposed the functionality to high-level
management software through a unifying interface supported
by Web Services interfaces (i.e. DPWS services).

Proceedings of the World Congress on Engineering 2010 Vol III
WCE 2010, June 30 - July 2, 2010, London, U.K.

ISBN: 978-988-18210-8-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2010

Figure 5: WS component interface for Component 1 of Station 1 for the test rig (Server for Distribution Hopper).

Figure 6: Proposed peer-to-peer event driven implementation of Station 1 & 2 of Festo test rig.

C. System Operation
In the test rig demonstration (Figure 1), the WS

communication provides a way of passing SOAP (Simple
Object Access Protocol) messages (i.e. XML) between
addressed locations (e.g. requester, subscriber) over the
SOAP protocol. The basic principle is described in this
research by the client/server model. The server acts as the
service provider/publisher and the client is a service
requester/subscriber. For event-driven automation systems,
the Web Services are utilised in the automation system to: 1-
send and receive the device state notification and 2-
request/initiate an operation on the device. In sending and
receiving the device state notification (1), the server acts as an
event source in terms of sending SOAP messages to the client,
referred to as an event sink/receiver. In the service invocation

(2), the server is a service provider to the client (i.e. a
requester). Based on this client-server functionality, the role
of manufacturing entities (e.g. Processes, MES, and ERP) can
be specified. In general, the process and machine is a server to
integrate MES and ERP applications (clients). It is noted that,
in the distributed peer-to- peer automation systems, the server
and the client functionality will coexist within the control
system (i.e. controllers) to allow the device-to-device
communication as shown in Figure 6.

The WS interface to each component is defined by the flow
of incoming (e.g. requesting I/O operations) and outgoing
(e.g. publishing state notifications) messages and parameters.
The control sequence (device behaviour) and I/O operation of
the component are defined inside the WS component block as
depicted in Figure 6. In addition, there is no actual (tight)
binding between interlocking components. The WS

Proceedings of the World Congress on Engineering 2010 Vol III
WCE 2010, June 30 - July 2, 2010, London, U.K.

ISBN: 978-988-18210-8-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2010

components interact through WS-Discovery, Subscribe, and
Eventing processes. Therefore, the programming complexity
is substantially reduced.

The required server component in the control system is
now known to the client and is ready to proceed with control
system operation. During the operation, the interaction
sequence between the server and the client is processed by:

1. Event server publishes the changing component state
information sent to the event client/subscriber for a new
update.

2. The client responds according to the defined state
logic/transition conditions.

3. If the enable function on server is triggered, the server
sends the requested SOAP message to invoke the specific
operation on the WS component to trigger the action on the
I/O channels.

This sequence runs repeatedly throughout the machine
cycle. Additionally, the integration at the higher system levels
is achieved in the similar manner through the implementation
of WS interfaces to connect to the test rig for system control
and monitoring.

VII. CONCLUSION AND FUTURE WORK

In this paper, a WS based automation system using a CB
design approach is presented. The concept of a Web Services-
based framework, capable of connecting various
heterogeneous platforms and diverse equipment so that they
may be integrated into a unified system and interact in a
co-operative way, has been outlined in this paper. This
concept of utilizing the Web Services protocol stack offers the
potential for manufacturing automation to evolve, enabling a
new paradigm of open standard, technology neutral and
interoperability components from various device vendors.
The development of device descriptions, embedded into the
component and the driving of system intelligence down to the
device level, ultimately offers the potential to eliminate the
need for system integrators to undertake low level
programming. The focus is on shifted towards building
higher-level control applications and improving efficiency.
This work investigates the configurability, and re-usability of
control systems and seamless integration to business levels,
thus enabling companies to become more agile and
collaborative.

This approach employs DPWS on the control devices,
which enables the evolution of an open standard for
manufacturing automation to provide ease of integration and
interoperability between various device platforms. From the
perspective of process integration, the manufacturing and
business applications can integrate with the control system via
the common DPWS device interface in order to invoke the
service via the SOAP- XML messages over the network. In
summary, the integration of the CB design approach with WS
on automation devices could be utilised not only in the
automotive manufacturing domain, but also in other domains
with soft-real time constraints. Further work is in progress to
improve the I/O response speed, security and the system
reliability regarding the potential loss of messages and error
recovery due to the non- deterministic Ethernet network that
needs to be addressed and managed.

ACKNOWLEDGMENT

The authors gratefully acknowledge the support of the EU
FP7 SOCRADES and EPSRC, IMCRC, GAIN and BDA
projects and their collaborator in enabling various aspects of
this research.

REFERENCES
[1] D.M. Anders, “Mass customization, the Proactive Management of

Variety,” in Build-to-Order & Mass Customization Casebook, CIM
Press, 2004.

[2] A. Molina, C. A. Rodriguez ; H. Ahuett ; J. A. Cortés ; M. Ramírez ; G.
Jiménez ;S. Martinez, “Next-generation manufacturing systems: key
research issues in developing and integrating reconfigurable and
intelligent machine,” in International Journal of Computer Integrated
Manufacturing, vol. 18, pp. 525-536, Oct-Nov 2005.

[3] M.F. van Assen, E.W. Hans, and S.L. van de Velde, “An agile planning
and control framework for customer-order driven discrete parts
manufacturing environments,” International Journal of Agile
Management Systems, vol. 2, no. 1, pp. 16 – 23, 2000.

[4] J. Yu and K. Krishnan, “A conceptual framework for agent-based agile
manufacturing cells,” in Info System Journal, vol. 14, pp. 93-109,
2004.

[5] R.H. Weston, “Model-driven, component-based approach to
reconfiguring manufacturing software systems,” International Journal
of Operations &Production Management, 19 (8), 834–855, 1999

[6] S.M. Lee, R. Harrison, A. West, “A Component-based Distributed
Control System,” In 2nd International Conference on Industrial
Informatics (INDIN’04), June 24-26 2004, Berlin, Germany, 33-38.

[7] R. Harrison, A.W. Colombo, A.A. West and S.M. Lee, “Collaborative
automation from rigid coupling towards dynamic reconfiguration
production systems,” in Proceedings of 16th IFAC World Control
Congress, Prague, Czech Republic.

[8] “OPC Overview- OLE for process control,” Emerson Process
Management©Whitepaper, March 2007,
Available: http://www.easydeltav.com/pd/WP_OPC_ Overview.pdf

[9] W. Sperling, and P. Lutz, “Design applications for an OSACA
control,” in Proceedings of the International Mechanical Engineering
Congress and Exposition, Dalles/USA, November 16-21, 1997.

[10] C. Abadie and R. Neubert, “The mechatronic automation framework
and its architecture requirements,” RIMACS Deliverable D 2.1
Internal Document, August 2006.

[11] F. Jammes, A. Mensch, and H. Smit, “Service-Oriented Device
Communications using the Devices Profile for Web Services,” in 21st
International Conference on Advanced Information Networking and
Applications Workshops (AINAW), 2007.

[12] F. Jammes, and H. Smit, “Service-Orient Paradigms in Industrial
Automation,” in IEEE Transactions on Industrial Informatics, vol. 1,
no. 1, pp. 62-70, 2005.

[13] P. Phaithoonbuathong, R. Harrison, A. West, R. Monfared, and T.
Kirkham “Web services-based automation for the control and
monitoring of production systems,” International Journal of
Computer Integrated Manufacturing, Volume 23 Issue 2, 126, Jan.
2010.

[14] L.M Sa de Souza, et al., “SOCRADES: A Web service based Shop
Floor Integration Infrastructure,” in The Internet of Things Book,
Publisher: Springer Berlin / Heidelberg, vol. 4952, March 2008.

[15] Schneider Electric, Web Services team, Grenoble, France. Advantys
STB: System User Guide. Available:
www.automation.schneider-electric.com, http://forge.soa4d.org.

Proceedings of the World Congress on Engineering 2010 Vol III
WCE 2010, June 30 - July 2, 2010, London, U.K.

ISBN: 978-988-18210-8-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2010

