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Abstract— Spectral clustering methods use eigen-
vectors of a matrix, called Gaussian affinity matrix, in
order to define a low-dimensional space in which data
points can be clustered. This matrix is widely used
and depends on a free parameter σ. It is usually in-
terpreted as some discretization of the Heat Equation
Green kernel. Combining tools from Partial Differen-
tial Equations and Finite Elements theory, we propose
an interpretation of this spectral method which offers
an alternative point of view on how spectral clustering
works. This approach develops some particular geo-
metrical properties inherent to eigenfunctions of some
specific partial differential equation problem. We an-
alyze experimentally how this geometrical property
is recovered in the eigenvectors of the affinity matrix
and we also study the influence of the parameter σ.

Keywords: Clustering, Machine Learning, Spatial
Data Mining

1 Introduction

Clustering aims to partition a data set by grouping sim-
ilar elements into subsets. Two general main issues con-
cern, on the one hand, the choice of a similarity criterion
and, on the other hand, how to separate clusters the one
from the other. Spectral methods, and in particular the
spectral clustering algorithm introduced by Ng-Jordan-
Weiss (NJW) [8], are useful when considering non-convex
shaped subsets of points. Spectral clustering (SC) con-
sists in defining a low-dimensional data space by select-
ing particular eigenvectors of a matrix called normalized
affinity matrix in which data points are clustered. In
this clustering method, two main problems arise : first,
what sense can we give to the notion of cluster when con-
sidering finite discrete data sets and then, how can we
link these clusters to some spectral elements (eigenval-
ues/eigenvectors extracted in SC).
Spectral Clustering can be analyzed using graph theory
and some normalized cut criterion leading to the solution
of some trace-maximum problems (see, for instance, [8],
[9]). As the aim is to group data points in some sense of
closeness, Spectral Clustering can also be interpreted by
exploiting the neighbourhood property in the discretiza-
tion of the Laplace-Beltrami operator and heat kernel on

∗IRIT-ENSEEIHT, 2 rue Charles Camichel,
University of Toulouse, France, 31017 BP 122
{sandrine.mouysset,joseph.noailles,daniel.ruiz}@enseeiht.fr

manifolds [2] : in the algorithm, neighbourhood property
is represented by the step of adjacency graph. Moreover,
consistency of the method was investigated by consider-
ing the asymptotic behaviour of clustering when samples
become very large [11, 10]. Some properties under stan-
dard assumptions for the normalized Laplacian matrices
were proved, including convergence of the first eigenvec-
tors to eigenfunctions of some limit operator [11, 7]. To
the best of our knowledge, the main results establish this
relation for huge numbers of points. However, from a nu-
merical point of view, SC still works for smaller data sets.
So, in this paper, we try to give explanations that may
address a given data sample.
A second problem appears when considering the most
widely used affinity matrix in spectral clustering tech-
niques, as in the NJW-algorithm. It is based on the
Gaussian measure between points which depends on a
free scale parameter σ which has to be properly defined.
Many investigations on this parameter were led and sev-
eral definitions were suggested either heuristically [12, 3],
or with physical considerations [6], or from geometrical
point of views [5]. The difficulty to fix this choice seems to
be tightly connected to the lack of some clustering prop-
erty explaining how the grouping in this low-dimensional
space defines correctly the partitioning in the original
data. We will show how this free parameter affects clus-
tering results.
In this paper, as spectral elements used in SC do not
give explicitly this topological criteria for a discrete data
set, we are drawing back to some continuous formula-
tion wherein clusters will appear as disjoint subsets. So
eigenvectors of the affinity matrix A will be interpreted as
eigenfunctions of some operator. This drawback is per-
formed (section 3) using Finite Elements (FE). Indeed,
with FE whose nodes correspond to data points, repre-
sentation of any L2-function is given by its nodal value.
So we expect to interpret both A and its eigenvectors as a
representation of respectively a L2 operator and L2 func-
tions on some bounded regular Ω.
Now, the commonly used operator whose Finite Elements
representation matches with A is the kernel of the Heat
equation on unbounded space (noted KH). As its spec-
trum is essential, we cannot interpret eigenvectors of A as
a representation of eigenfunctions of KH . However, on a
bounded domain O, KH is closed to KD, the kernel of the
Heat equation on a bounded domain Ω, for Ω including
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strictly O (section 2.2). Now, operator SD (convolution
by KD) has eigenfunctions (vni) in H1

0 (Ω). From this,
we show (proposition 1) that operator SH (convolution
by KH) admits these vni as near eigenfunctions plus a
residue (noted η). At last, using Finite Elements approx-
imation, we show (proposition 2) that eigenvectors of A
are a representation of these eigenfunctions plus a residue
(noted ψ).

To summarize, the main result of this paper is that for
a fixed data set of points, the eigenvectors of A are the
representation of functions which support is included in
only one connected component at once. The accuracy of
this representation is shown to depend for a fixed den-
sity of points, on the affinity parameter t. This result is
illustrated with small fixed data points (section 4).

1.1 Spectral clustering Algorithm

Let us first give some notations and recall the NJW algo-
rithm for a n points data set in a p-dimensional euclidean
space. Assume that the number of targeted clusters k is
known. The algorithm contains few steps which are de-
scribed as follows:

Algorithm 1 Spectral Clustering Algorithm
Input : data set, number of clusters k

1. Form the affinity matrix A ∈ Rn×n defined by:

Aij =

{
exp

(
−∥xi−xj∥2

2σ2

)
if i ̸= j,

0 otherwise,
(1)

2. Construct the normalized matrix:
L = D−1/2AD−1/2 with Di,i =

∑n
j=1Aij ,

3. Assemble the matrix X = [X1X2..Xk] ∈ Rn×k by
stacking those eigenvectors associated with the k
largest eigenvalues of L,

4. Form the matrix Y by normalizing each row in the
n× k matrix X,

5. Treat each row of Y as a point in Rk, and group
them in k clusters via the K-means method,

6. Assign the original point xi to cluster j when row i
of matrix Y belongs to cluster j.

In this paper, we won’t take into account the normal-
ization of the affinity matrix described in step 2. But
we focus on the two main steps of this algorithm: as-
sembling the Gaussian affinity matrix and extracting its
eigenvectors to create the low-dimensional space.

2 Clustering property of Heat kernel

As recalled in introduction, Spectral Clustering consists
in selecting particular eigenvectors of the normalized
affinity matrix defined by (1). Gaussian affinity coeffi-
cients Aij are usually interpreted as a representation of
the Heat kernel evaluated at data points xi and xj .

Let KH(t, x, y) = (4πt)−
p
2 exp

(
−∥x−y∥2

4t

)
be the Heat

kernel in R∗
+ × Rp × Rp. Note that the Gaussian affinity

between two distinct data points xi and xj is defined
by Aij = (2πσ2)−

p
2 KH(σ2/2, xi, xj). Now, consider the

initial value problem in L2(Rp), for f ∈ L2(Rp):

(PRp)

{
∂tu−∆u = 0 for (x, t) ∈ Rp × R+\{0},
u(x, 0) = f for x ∈ Rp,

and introduce the solution operator in L2(Rp) of (PRp):

(SH(t)f)(x) =

∫
Rp

KH(t, x, y)f(y)dy, x ∈ Rp. (2)

Now if f(y) ≈ δxj (y), where δxj denotes the Dirac func-
tion on xj , one can observe that:(
SH(

σ2

2
)f

)
(xi) ≈ KH

(
σ2

2
, xi − xj

)
=

(
2πσ2

) p
2 (A+ In)ij .

Thus, the spectral properties of matrix A used in the
Spectral clustering algorithm seems to be related to those
of operator SH(t). We propose to analyze this in details
in the following.

2.1 Heat equation with Dirichlet boundary
conditions

To simplify, we shall fix in the following the number of
clusters k to 2, but the discussion can be extended to any
arbitrary number k. Consider then a bounded open set Ω
in Rp made up of two disjoint connected open subsets Ω1

and Ω2. Assume that the boundary ∂Ω = ∂Ω1∪∂Ω2 with
∂Ω1∩∂Ω2 = ∅ is regular enough so that the trace operator
is well-posed on ∂Ω and the spectrum decomposition of
Laplacian operator is well-defined. For instance, ∂Ω is
C1 on both ∂Ω1 and ∂Ω2. According to [4], determining
the eigenvalues (λn(Ω))n>0 and associated eigenfunctions
(vn)n>0 of the Dirichlet Laplacian on Ω:

(PL
Ω)

{
∆vn = λvn in Ω,

vn = 0 on ∂Ω,

is equivalent to define a function of the eigenvalues
(λn1(Ω1))n1>0 and (λn2(Ω2))n2>0 and of the eigenfunc-
tions of the Dirichlet Laplacian on Ω1 and Ω2 respec-
tively. In other words, if vn ∈ H1

0 (Ω), then ∆v = λv
on Ω if and only if for i ∈ {1, 2}, vi = v|Ωi

∈ H1
0 (Ωi)

satisfies ∆vni = λvni on Ωi. Therefore, {λn(Ω)}n>0 =
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{λn1(Ω1)}n1>0 ∪ {λn2(Ω2)}n2>0. Additionally, if we con-
sider vni the solution on Ωi of PL

Ωi
, an eigenfunction of

the Laplacian operator ∆ associated to λni , and if we
extend the support of vni ∈ Ωi to the whole set Ω by set-
ting vni = 0 in Ω\Ωi, we also get an eigenfunction of the
Laplacian ∆ in H1

0 (Ω) associated to the same eigenvalue
λni . Note that since Ω1 and Ω2 are disjoint, the exten-
sion by 0 to the whole set Ω of any function in H1

0 (Ωi)
is a function in H1

0 (Ω). Consequently, the union of the
two sets of eigenfunctions {(vni)ni>0, i ∈ {1, 2}}, is an
Hilbert basis of H1

0 (Ω).

Now let f ∈ L2(Ω) and consider the heat problem with
Dirichlet conditions on the bounded set Ω = Ω1 ∪ Ω2 :

(PD
Ω )


∂tu−∆u = 0 in R+ × Ω,

u = 0, on R+ × ∂Ω,

u(t = 0) = f, in Ω.

Denote by KΩ
D the Green’s kernel of (PD

Ω ). The solution
operator in H2(Ω) ∩ H1

0 (Ω)) associated to this problem
is defined, for f ∈ L2(Ω), by:

SΩ
D(t)f(x) =

∫
Ω

KD(t, x, y)f(y)dy, x ∈ Rp.

Eigenfunctions of SΩ
D(t) and those of the Laplacian op-

erator ∆ are the same. Indeed, if vni is an eigenfunc-
tion of (PL

Ω) associated to an eigenvalue λni then vni is
also eigenfunction of SD(t) with eigenvalue etλni in the
sense that SΩ

D(t)vni(x) = etλni vni(x). Thus the geomet-
rical property of the eigenfunction is preserved, i.e the
support of eigenfunctions can be defined in only one con-
nected component Ω1 or Ω2.

2.2 A clustering property from eigenfunc-
tions of Heat equation with Dirichlet
boundary conditions

We consider now the solution operator SH(t) of (PRp).
As opposed to the previous case, we can not deduce sim-
ilar properties as with the operator solution of (PD

Ω ) be-
cause the spectrum of SH(t) is essential and eigenfunc-
tions are not localized in Rp without boundary condi-
tions. However, we are going to compare, for fixed values
of t, SH(t) and SΩ

D(t) and derive some asymptotic prop-
erties on SH(t) that approximate the previously analyzed
properties of SΩ

D(t).

For ε > 0, let introduce an open subset O which approx-
imates from the interior the open set Ω, in the sense
that O ⊂ Ō ⊂ Ω and Volume(Ω\O) ≤ ε. Note δ(y) the
distance of a point y ∈ O to ∂Ω, the boundary of Ω, and
δ = infy∈O δ(y) the distance from O to Ω (see fig1). At
last, O is supposed to be chosen such that δ > 0.

As recalled in [1], for t > 0, x and y in Ω, KH(t, x, y) is a
distribution that corresponds to the elementary solutions

O
 1

 1
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y δ

Ω
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O

 2
     1      

Ω
Ω

    1    
    2

 
 O

(b)

Figure 1: (a) Approximation of Ω1 with an open set O1,
(b) Mesh representation : xi ∈

◦
Ω, ∀i ∈ {1, ..n}

of the heat equation (PRp)|Ω, KH is strictly positive on
the boundary ∂Ω and, due to the maximum principle,
KD is bounded above by KH , ∀(t, x, y) ∈ R+ × Ω× Ω :

0 < KD(t, x, y) < KH(t, x, y). (3)

Furthermore, both Green’s kernels KH and KΩi

D approx-
imate each other on each open set Oi, i ∈ {1, 2} and
an estimation about their difference can be given by,
∀(x, y) ∈ Oi ×Oi, ∀i ∈ {1, 2} :

0 < KH(t, x, y)−KΩi

D (t, x, y) ≤ 1

(4πt)
p
2

e−
δ(y)2

4t . (4)

Now, for any f ∈ L2(Θ), let us come back to the heat
solution SH(t)f and restrict its support to the open set
Oi, for i ∈ {1, 2}. For any open set Θ, the resulting
restricted operator SH to Θ, for f ∈ L2(Θ) is:

SΘ
H(t)f(x) =

(∫
Θ

KH(t, x, y)f(y)dy

)
|Θ, x ∈ Θ.

At last, define also Ti, for i ∈ {1, 2} as the L2-mapping
from L2(Oi) onto L2(O) which extends the support of
any function u ∈ L2(Oi) to the whole set Ω with:

∀u ∈ L2(Oi), Ti(u) =

{
u in Oi,

0 in Ω\Oi

(5)

With these notations, we can then state the following
proposition:

Proposition 1 Let i ∈ {1, 2}, ṽni = Ti(vni |Oi) where
vni is the eigenfunction in H2(Ωi)∩H1

0 (Ωi) associated to
exp−λni

t for operator SΩi

D . Then, for t > 0, we have the
following result:

SO
H(t)ṽni = exp−λni

t ṽni + η(t, ṽni), (6)

with ∥η(t, ṽni)∥L2(O) → 0 when t→ 0, δ → 0.

Proof sketch. By triangular inequality,
∥η(t, ṽni)∥L2(O) =

∥∥SO
H(t)ṽni − exp−λni

t ṽni

∥∥
L2(O)

is
bounded above by three terms:

∥η(t, ṽni)∥L2(O) ≤ ∥ς(t, vni |Oi)∥L2(O) + . . .
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. . .
∥∥∥SΩi

D (t)Ti (vni |Oi − vni)
∥∥∥+∥∥∥SΩi

D (t)vni − e−λni
tṽni

∥∥∥
L2(O)

.

On the right side, Ti (vni |Oi − vni) has its support in-
cluded in Ωi\Oi and supp Ωi\Oi tends to ∅ when δ → 0.
Moreover, operator SΩi

D (t) tends to identity when t→ 0.
So both two last terms in the right side of this inequality
vanish when (t, δ) → 0.
For vni |Oi ∈ L2(Oi), ∥ς(t, vni |Oi)∥L2(O) = ∥SO

H(t)ṽni −
SΩi

D (t)ṽni∥L2(O) can be bounded above by means of both
equations (3) and (4), for t > 0 and for all i ∈ {1, 2}, by :

(4πt)
−p
2 ∥vni |Oi∥

2
L2(Oi)

(
e−

δ2

2t V ol(Oi) + e−
γ2

4t V ol(O)

)
,

with γ = inf
x∈Oj ,y∈Oi

∥x− y∥ ≥ 2δ.

Proposition 1 means that the operator SO
H(t) has ’almost

eigenfunctions’ which are exactly those of the Dirichlet
problem (PD

Ω ) restricted to Oi ⊂ Ωi. Moreover, it pre-
cises this closeness behaviour with its dependance on t.
At last, these eigenfunctions are supported into a sin-
gle connected component which means that they can be
used to characterize if a point belongs to a given Ωi or
not. Finally, if we consider the behaviour of the function
s 7→ (4πs)−

p
2 e−

δ(y)2

4s involved in (4), we may assume that
parameter t should be smaller than δ(y)2 for all y ∈ O,
and should tend to 0 within a fraction of the distance δ2
to preserve the asymptotical result of propostion 1.

3 Interpretation of the Spectral Cluster-
ing algorithm with Finite Elements

Introduce Lagrange finite elements so that nodes are the
set of NJW algorithm data points Σ included in Ō ⊂ Rp.
Let τh be a triangulation on Ō such that : h = max

K∈τh
hK ,

hK being a characteristic length of triangle K. Meshing
of each part of O is represented on figure 1 (b). Thus, con-
sider a finite decomposition of the domain : Ō = ∪K∈τhK
in which (K,PK ,ΣK) satisfies Lagrange finite element as-
sumptions for all K ∈ τh: K is a compact, non empty set
of τh such that supp(K) ⊂ O, PK is a finite dimension
vector space generated by shape functions (ϕi)i such that
PK ⊂ H1(K) and Σ = ∪K∈τhΣK .

Let define the finite dimension approximation space:
Vh = {w ∈ C0(Ō); ∀K ∈ τh, w|K ∈ PK}.
For all i, 1 ≤ i ≤ n, let the sequence of shape functions
of Vh noted (ϕi)i : O → R where ϕi = ϕ|K ∈ PK satisfied
to: ϕi(xj) = δij , ∀ xj ∈ Σ, δij being the Dirac function
of (i, j).
This finite space Vh is generated by the sequence (ϕi)i
with Vh = V ect < (ϕi)i >⊂ L2(O,R). Let Πh the
linear interpolation from L2(O,R) in Vh with the usual
scalar product (·|·)L2 . According to this notations, the
Πh-mapping of kernel y 7→ KH(t, x − y) is defined for

t > 0 by, ∀y ∈ O, ∀ 1 ≤ j ≤ n :

Πh(KH(t, x− y)) = 1

(4πt)
p
2

n∑
i=1

exp

(
−∥x− xi∥2

t

)
ϕi(y).

Thus, for t > 0, the Πh-mapped operator SO
H applied to

each ϕj is, ∀ 1 ≤ j ≤ n :

Πh(S
O
H(t)ϕj)(x) =

1

(4πt)
p
2

n∑
k=1

(
ÂM

)
kj
ϕk(x) +O(h, x),

(7)
where M stands for the mass matrix defined by : Mij =

(ϕi|ϕj)L2 and Â = A+ In where A is the affinity matrix.
So, with the same assumptions as in section 2.2, equation
(1) can be formulated via the linear interpolation Πh:

Proposition 2 Let vni be an eigenfunction of SΩi

D (t) in
H2(Ω) ∩ H1

0 (Ω) associated to the eigenvalue exp−λni
t

such that SΩi

D (t)vni = exp−λni
t vni . Let i ∈ {1, 2},

ṽni = Ti(vni |Oi). Then, for Wni = Πhṽni ∈ Vh and
t > 0, :

ΠhS
O
H(t)Wni = exp−λni

tWni + ψ(t, h), (8)

where ∥ψ(t, h)∥L2(Vh)
→ 0 when (h, t) → 0 and δ → 0.

Proof sketch. Apply Πh interpolation to the equa-
tion of proposition 1. Using linearity and continuity of
Πh and Cauchy-Schwarz inequality, an upper bound of
∥ΠhS

O
H(t)(Πhṽni − ṽni)∥2 could be given, for a given con-

stant CΠh
> 0, by :

CΠh
(4πt)−

p
4 ∥vni |Oi∥L2(Oi)

V ol(O)
3
2

(
e−

δ2

2t + e−
γ2

4t

) 1
2

.

In this approach, we have to estimate the neighbourhood
distance δ between Ωi and Oi for i ∈ {1, 2}. But this
result totally relies on both the discretization step h and
the Gaussian parameter t. So we investigate their role in
the following numerical experiments.

4 Numerical experiments

Let consider two test cases : one in which clusters can
be separated by hyperplanes (see fig 2(a)) and another
one in which clusters are embedded (see fig 3(a)). We
analyze the influence of parameter t on the difference
between discretized eigenfunctions of SO

D(t) and eigen-
vectors of matrix ÂM . In figure 2 (b)-(c)-(d) and figure
3 (b)-(c)-(d), we plot the discretized eigenfunction asso-
ciated to the first eigenvalue of each connected compo-
nent. We also indicate in figure 2 (e)-(f)-(g) the product
of these discretized eigenfunctions Wni , for i ∈ {1, 2, 3},
with matrix ÂM or with matrix A as well. This shows the
locality of eigenfunctions is preserved by the discretized
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operator ÂM or A. Still, to get better insight about this
geometrical invariance property, we finally compare the
projection coefficients between these discretized eigen-
functions Wni with the eigenvectors of ÂM and A that
maximizes these projection coefficient. In other words,
let Wni = Πhṽni ∈ Vh and Xl the eigenvector of ÂM
such that l = argmaxj(Wni |Xj), the projection coeffi-
cient correponds then to ω =

|(Wni
|Xl)|

∥Wni
∥2∥Xl∥2

. Since matrix

ÂM depends on the parameter t, we indicate in figure
(k) how this coefficient ω evolves with varying values of
t. In figure (l), we also indicate the difference of the
norms α = ∥Xl −Wni∥2. We do the same in figure (m)
and (n) with respect to eigenvectors of the affinity matrix
A instead of ÂM and noted respectively τ and β. The
projection coefficient ω, which gets close to 1 for some
optimal value of t, highlights the fact discretized eigen-
functions of Laplacian operator with Dirichlet boundary
conditions on some wider subset Ωi that includes the con-
nected component Oi are indeed close to eigenvectors of
the discretized heat operator without boundary condi-
tions but with a parameter t that needs to be chosen in
a given appropriate window.

The vertical dash-dot line in figure (k)-(l)-(m)-(n) in-
dicates the value of the parameter t based on the geo-
metrical point of view proposed in [5]: th = Dmax

2n
1
p

with

Dmax = max1≤i,j≤n ∥xi − xj∥2. At a first glance, it is
close to an optimum in all these figures. This critical
value th, seems to give a good estimate of the length
δ between clusters. This critical value th relies on the
assumption that the p-dimensional data set is isotropic
enough in the sense that no directions are privileged with
very different magnitudes in the distances between points
along these directions. It shows the link between eigen-
vectors and eigenfunctions with respect to parameter t,
and that th is a good candidate to perform Spectral Clus-
tering.

5 Conclusion

In this paper, we analyze some steps of Spectral Cluster-
ing with analogy to eigenvalue problems. From this inter-
pretation, a clustering property based on the eigenvectors
and an asymptotic condition on the Gaussian parameter
have been extracted. This leads to some interpretation
on how spectral clustering works and how results could
be affected with respect to the affinity parameter and
separation between clusters. However we didn’t take into
account the normalization step of the spectral clustering
algorithm which role is crucial to order the eigenvalues
in an appropriate way so that connected components are
easy to detect by means of eigenvectors associated to the
largest eigenvalues.
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Figure 2: Example 1: (a) Data set with n = 302 points,
(b), (c), (d) Discretized eigenfunction Wni , i ∈ {1, 2, 3},
(e)-(f)-(g) Product ÂMWni , (h)-(i)-(j) Product AWni ,
(k)-(l) Correlation ω and Euclidean norm difference α
between Wni , i ∈ {1, 2, 3} and eigenvectors Xl of ÂM
functions of t, (m)-(n) Correlation τ and Euclidean norm
difference β between Wni , i ∈ {1, 2, 3} and eigenvectors
Yl of A functions of t.
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Figure 3: Example 2: (a) Data set with n = 368 points,
(b), (c), (d) Discretized eigenfunction Wni , i ∈ {1, 2, 3},
(e)-(f)-(g) Product ÂMWni , (h)-(i)-(j) Product AWni ,
(k)-(l) Correlation ω and Euclidean norm difference α
between Wni , i ∈ {1, 2, 3} and eigenvectors Xl of ÂM
functions of t, (m)-(n) Correlation τ and Euclidean norm
difference β between Wni , i ∈ {1, 2, 3} and eigenvectors
Yl of A functions of t.
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