
 
 

 

 

Abstract—Markov blanket was proved as the theoretically 

optimal feature subset to predict the target. IPC-MB was 

firstly proposed in 2008 to induce the Markov blanket via local 

search, and it is believed important progress as compared with 

previously published work, like IAMB, PCMB and PC. 

However, the proof appearing in its first publication is not 

complete and sound enough. In this paper, we revisit IPC-MB 

with discussion as not found in the original paper, especially on 

the proof of its theoretical correctness. Besides, experimental 

studies with small to large scale of problems (Bayesian 

networks) are conducted and the results demonstrate that IPC-

MB achieves much higher accuracy than IAMB, and much 

better time efficiency than PCMB and PC. 

 

Index Terms—Feature selection, Markov Blanket, IPC-MB.  

 

I. INTRODUCTION 

The Markov Blanket (MB) of one target ܶ, denoted as 

 ሺܶሻ, was realized as theoretically optimal feature subsetܤܯ

to predict the value of ܶ by Koller and Sahami in 1996 [1], 

though the concept Markov Blanket itself, in fact, can be 

traced back to even earlier time 1988 [2]. One approximate 

algorithm to induce ܤܯሺܶሻwas proposed by Koller and 

Sahami in [1], and it is referred as KS algorithm by the 

initials of authors. Since then, with problems involved with 

many features becoming common, several works on feature 

selection via the induction of ܤܯሺܶሻ has appeared, 

including GS [3], IAMB and its variants [4, 5], MMPC/MB 
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[5], HITON-PC/MB [6], Fast-IAMB [7], PCMB [8] and the 

latest one IPC-MB [9].  

Given the faithfulness assumption (see Definition 1), 

 ሺܶሻ is known as unique, and it owns two criticalܤܯ

properties: (1) Given the full knowledge of ܤܯሺܶሻ,ܶ is 

independent with any ܺ ∈ ሺܶሻ\ሼܶሽ, where Uܤܯ\܃  

contains all features in the observations; and (2) ܤܯሺܶሻ is 

composed of ܶ’s parents, children and spouses. KS, GS, 

IAMB and its variants (referred as GROUP I) are proposed 

based on the first property. In contrast, MMPC/MB, 

HITON-PC/MB, PCMB and IPC-MB (saying GROUP II) 

are built on the second property, i.e. the so-called topology 

structure. The most advantage of GROUP II over GROUP 

I is known as data efficiency, and it greatly influence the 

actual precision and recall performance in practice between 

them.  

Among the four known algorithms of GROUP II, 

unfortunately, MMPC/MB and HITON-PC/MB are shown 

with no guarantee to produce correct outcomes always [8]. 

PCMB is the first one proved correct and demonstrated with 

satisfactory data efficiency than those of GROUP I, but it 

loses to more recently proposed IPC-MB in terms of time as 

well as data efficiency [9, 10]. As introduced firstly by Fu in 

2008 [9], though IPC-MB indeed has the potential to prevail 

over PCMB and achieve the best trade-off among existing 

algorithms for inducing Markov blanket but without having 

to learn the whole Bayesian network first, it is noticed that 

the proof of IPC-MB is not complete. Therefore, we revisit 

IPC-MB here by re-explaining how it works, and proving 

that it guarantees to produce correct results theoretically. 

Section 2 contains necessary theory foundation and the 

overall description of IPC-MB. In Section 3, the 

specification and proof of each step as involved are covered. 

Experimental studies are conducted over IAMB, PCMB, 

IPC-MB and PC in Section 4. We conclude our work and 

discovery in Section 5.   
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II. THEORY FOUNDATION AND OVERALL DESCRIPTION 

A. Theory Foundation 

If the probability distribution over U  can be faithfully 

represented by a Bayesian network, ܤܯሺܶሻ is unique and 

composed of ܶ’s parents (ܲܽሺܶሻ), children (݄ܥሺܶሻ) and 

spouses (ܵሺܶሻ) [2], i.e. ܤܯሺܶሻ ൌ ܲܽሺܶሻ ∪ ሺܶሻ݄ܥ ∪

  .ሺܶሻܵ

Definition 1 (Faithfulness Condition) A Bayesian Network 

 .and a joint distribution ܲ are faithful to one another iff ܩ

every conditional independence entailed by the graph ܩ and 

the Markov Condition (referred as Local Markov Property, 

Theorem 3) is also present in ܲ [2].  

Theorem 1 If a Bayesian network ܩ is faithful to a joint 

probability distribution ܲ, then (1) there is an edge between 

the pair of nodes ܺ and ܻ in ܩ iff. ܺ and ܻ are conditionally 

dependent given any other set of nodes, and (2) for each 

triplet of nodes ܺ, ܻ and ܼ in ܩ such that ܺ and ܻ are 

adjacent to ܼ but ܺ is not adjacent to ܻ, ܺ → ܼ ← ܻ is a 

sub-graph of ܩ iff. ܺ and ܻ are dependent conditioned on 

every other set of nodes that contains ܼ [11].  

Faithfulness assumption sets up a connection between 

probability distribution and topology structure, on which 

Theorem 1 is built and plays as one important reference for 

algorithms of GROUP II. Algorithms of GROUP II induce 

 ሺܶሻ via the recognition of connections as exist betweenܤܯ

(1) ܶ and ܲܽሺܶሻ, (2) ܶ and ݄ܥሺܶሻ, and (3) the V-structure 

ܶ → ܺ ← ܻ where ܺ ∈ ܻ ሺܶሻand݄ܥ ∈  ሺܶሻ. By Theoremܵ

1, recognizing connections of interest then becomes as a 

series of recognitions that if  and ܻ are conditionally 

independent as conditioned on ܈ (∅ ⊆ ࢆ ⊆  We use .(܃

,ሺܺܫ  ,ሻ to denote this conditional independence relation܈|ܻ

and ܫሺܺ,  ሻ as some statistical test employed using܈|ܻ

observations ܦ.  

B. Overall Architecture 

Although IPC-MB can be grouped into the category of 

HITON-PC/MB, MMPC/MB and PCMB, it differs from 

those three in term of search strategy: IPC-MB proceeds by 

removing non-MB variables iteratively, with true ones left, 

while the other three directly determine which ones should 

be included. Because IPC-MB starts to filter out true 

negatives with empty conditioning set on, and increase the 

size of conditioning set with one in each iteration (see 

RecognizePC in Fig. 1), negatives are removed by lowest-

order tests with priority. By doing so, decisions made via the 

results of statistical tests are ensured with maximum 

confidence, improving the overall reliability of the 

algorithm especially when the sample size is limited in 

practice. This is meaningful since algorithms based on 

statistical tests suffer most from the curse dimensionality. In 

contrast, the others (HITON-PC/MB, MMPC/MB and 

PCMB) typically check all possible CI tests, involving small 

to large conditioning set, to decide whether or not to absorb 

each variable as candidate MB member.  

 

 

 

Fig. 1. Pseudo code of IPC-MB and RecognizePC. 

The whole procedure of IPC-MB (Fig. 1) can be divided 

into two phases: 

 Firstly, it recognizes those directly connected to ܶ, 

i.e. parents and children mixed, and they are 

denoted as ܲܥሺܶሻ(Line 1 – 12); Then, 
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 It recognizes the spouses of ܶ as exist among 

∪∈ሺ்ሻ  – ሺܶሻ (Line 13ܵ ሺܺሻ, denoted asܥܲ݊ܽܥ

20). Note that ܺ ∈ ሺܶሻܥܲ ∩  ሺܶሻ is recognized asܵ

 ሺܶሻ with priority and would be added intoܥܲ

  .ሺܶሻ in the first stepܤܯ

 

III. SPECIFICATION AND PROOF OF SOUNDNESS 

A. Learn Candidate Parents/Children 

As the name indicates, the discovery of parent/child is 

critical to IPC-MB. In this section, we introduce the core 

part of IPC-MB, RecognizePC(ܶ), which returns to us to one 

candidate parent/children set, denoted as ܥܲ݊ܽܥሺܶሻ. It not 

only contains ܶ’s parents and children, but some false 

positives possibly. How to remove these false ones to get the 

exact ܲܥሺܶሻ is discussed in next section.  

RecognizePC starts by assuming that the target ܶ is 

dependent with all ܺ ∈  i.e. there is one “virtual” edge ,்ܬܦܣ

connecting ܶ and each ܺ. Then, it determines whether each 

arc ܶ െ ܺ should be removed. When ܫሺܶ,  ሻ fails with܁|ܺ

some ܁ ⊆ ,்ܬܦܣ  ܺ is deleted from ்ܬܦܣ, just like ܶ െ ܺ 

being deleted. Since the conditioning set ܁ begins with 

empty set on, any recognizable false positive ܺ is always 

deleted given the minimum conditioning set, which ensures 

data efficiency.  

Theorem 2 Under the assumptions that the independence 

tests are correct and that the learning data ܦ is an 

independent and identically distributed sample from a 

probability distribution ܲ faithful to a DAG ܩ, given 

்ܬܦܣ ൌ  ሼܶሽ, RecognizePC enables us to find the superset\܃

of ܲܥሺܶሻ, denoted as ܥܲ݊ܽܥሺܶሻ, and it has two properties: 

(1) for each ܺ ∈ ܺ ,ሺܶሻܥܲ ∈ ሺܶሻܥܲ ሺܶሻ; and (2)ܥܲ݊ܽܥ ⊑

  .ሺܶሻܥܲ݊ܽܥ

Proof. We prove the first property by contradiction. With 

்ܬܦܣ ൌ ܺ ሼܶሽ, we assumed that there is some\܃ ∈  ሺܶሻܥܲ

but not output by RecognizePC. According to Theorem 1, 

we have such a fact that if ܺ ∈  ሺܶሻ, it should NOT beܥܲ

independent with ܶ given any conditioning set, i.e. it should 

pass all ܫሺܶ,  ܺ ,ሻ as met in RecognizePC. Therefore܁|ܺ

would not be output by RecognizePC only when ܺ is not 

connected with ܶ, which is obviously contradictory with the 

fact that ܺ ∈ ܺ ሺܶሻ. Therefore, allܥܲ ∈  ሺܶሻ would beܥܲ

returned by RecognizePC. The second one is illustrated by 

Lemma 2 (refer below). █ 

Theorem 2 concludes the contribution of RecognizePC, 

i.e. RecognizePC outputs a superset of the target ܲܥሺܶሻ. 

Before discuss how to filter out those un-expected variables, 

it is necessary to study what they are and how it happens. 

Definition 2 (Descendant) ܻ is a descendant of ܺ, if 

there exists a directed path from ܺ to ܻ, but there exists no 

directed path from ܻ to ܺ. Descendants of ܺ is denoted as 

  .ሺܺሻ in the remaining textݏ݁ܦ

Definition 3(Non-Descendant) Given all variable set ܃, 

those other than descendants are known as non-descendants 

of ܺ, denoted as ܰܦሺܺሻ. ܰܦሺܺሻ ൌ   .ሺܺሻ\ሼܶሽݏ݁ܦ\܃

Theorem 3 ܫ൫ܺ,  ሺܺሻ\ܲܽሺܺሻหܲܽሺܺሻ൯, i.e. ܺ isܦܰ

independent with ܰܦሺܺሻ\ܲܽሺܺሻ given the full knowledge 

of ܲܽሺܺሻ (Local Markov Property) [2].  

Lemma 1 Given ܶ and ்ܬܦܣ ൌ  ሼܶሽ,  the output of\܃

RecognizePC will NOT contain ܰܦሺܶሻ\ܲܽሺܶሻ.  

Proof. (1) ܫሺܶ,  ሺܶሻ\ܲܽሺܶሻ|ܲܽሺܶሻሻ by Theorem 3; (2)ܦܰ

ܲܽሺܶሻ will always stay in ்ܬܦܣ by Theorem 2; (3) The 

conditioning set starts with  on, so we are guaranteed to 

have chance to be conditioned on ܲܽሺܶሻ when 

݁ݖ݅ܵݐ݁ܵݐݑܿ ൌ |ܲܽሺܶሻ|; (4) We check each ܺ ∈  in ்ܬܦܣ

each iteration, and ܰܦሺܶሻ ⊆  Therefore, each .்ܬܦܣ

ܺ ∈  ሺܶሻ\ܲܽሺܶሻ is able to be recognized and deletedܦܰ

from ்ܬܦܣ due to ܫሺܶ, ܺ|ܲܽሺܶሻሻ   █ .ߝ

Lemma 2 Given ܶ and ்ܬܦܣ ൌ  ሼܶሽ, the output of\܃

RecognizePC may contain descendants of ܶ.  

Due to the limit of space, interesting readers can refer [8] 

for such examples. In the next section, we will discuss how 

to construct a true parent-children set of ܶ, i.e. ܲܥሺܶሻ, by 

filtering those false positives as may output by 

RecognizePC(T).  

B. Learn Parents/Children 

As we discussed above, RecognizePC(ܶ) may output some 

false positives, and they can only be descendants of ܶ 

(combine Lemma 1 and Lemma 2). Foutunately, filtering 

out these false positives from ܥܲ݊ܽܥሺܶሻ is trivial. Given 

∀ܺ ∈ ܶ ሺܶሻ, we check ifܥܲ݊ܽܥ ∈ -ሺܺሻ (Line 7, IPCܥܲ݊ܽܥ

MB) via repeatedly calling RecognizePC(X) (Line 6, IPC-

MB) to get ܥܲ݊ܽܥሺܺሻ. If ܶ ∈  ሺܺሻ, ܺ is known asܥܲ݊ܽܥ

one true parent/child, and it is added into ܲܥሺܶሻ (Line 8, 

IPC-MB). Otherwise, it is ignored and won’t enter 

into ܲܥሺܶሻ.  

Lemma 3 With ܥܲ݊ܽܥሺܶሻ = RecognizePC(ܶ) ready, 

given ∀ܺ ∈  ,(ܺ)ሺܺሻ = RecognizePCܥܲ݊ܽܥ ሺܶሻ andܥܲ݊ܽܥ

(1) if ܶ ∈  ,ሺܺሻ, ܺ is known as a true parent/childrenܥܲ݊ܽܥ

and should be added into ܲܥሺܶሻ (Line 7-10, IPC-MB); (2) 

otherwise, ܺ is known as a false parent/children, and should 

be ignored.  
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Proof. From Theorem 2 and Lemma 2, it is known that 

 ሺܶሻ may contain two types of attributes: trueܥܲ݊ܽܥ

parents/children of ܶ as expected, and descendants of ܶ that 

is not desired. Given ∀ܺ ∈  ሺܶሻ, we need to proveܥܲ݊ܽܥ

that: what true is still recognized as true, but what false can 

be successfully filtered out.  

Given ܺ ∈ ܶ ሺܶሻ, obviouslyܥܲ ∈  ሺܺሻ and ܶ definitelyܥܲ

would be returned by RecognizePC(ܺ) given Theorem 2. 

So, it is safe to add such ܺ into ܲܥሺܶሻ. 

Given ܺ ∈  ሺܺሻ may containܥܲ݊ܽܥ ሺܶሻ, we know thatݏ݁ܦ

 .ሺܺሻ plus some of ܺ’s descendants possibly (Lemma 2)ܥܲ

Since ܶ ∉  ሺܺሻ, ܶ may be output by ReconigzePC(ܺ) onlyܥܲ

because it is X’s descendant. If this is true, then ܶ is its own 

descendant’s descendant, which is impossible because one 

cycle happens. Hence, given ܺ ∈ ܶ ሺܶሻ butܥܲ݊ܽܥ ∉

 ሺܺሻ, ܺ is known as false positive and  should not beܥܲ݊ܽܥ

added to ܲܥሺܶሻ. █ 

Theorem 4 Under the assumptions that the independence 

tests are correct and that the learning data ܦ is an 

independent and identically distributed sample from a 

probability distribution ܲ faithful to a DAG ܩ, IPC-MB 

allows us to find the complete and correct parents and 

children about ܶ of interest.  

Proof. Given Theorem 2, Lemma 1, Lemma 2, Lemma 3 

and the fact that we call RecognizePC(ܺ) for each ܺ ∈

 █ .ሺܶሻ, the proof is trivialܥܲ݊ܽܥ

Therefore, by the Line 12 of IPC-MB, we have a true 

 ሺܶሻ, and it is noticed that the learning is built on a seriesܥܲ

of RecognizePC(ܺ) , which exactly explains why the 

algorithm is called Iterative Parent-Child based learning of 

Markov Blanket (IPC-MB). What left is the learning of ܶ’s 

spouses, i.e. ܵሺܶሻ. How to recognize ܵሺܶሻ is discussed in 

the section below, but it is necessary to predict that it 

depends on the output of RecognizePC(ܺ) as well. 

C. Learn Spouse 

By the Line 12 of IPC-MB (Fig. 1), we have ܤܯሺܶሻ ൌ

 ሺܶሻ as discussed in last section. In fact, we also haveܥܲ

collected all candidate spouses of  ܶ during the repeated 

calls of RecognizePC(ܺ) given ܺ ∈  ,ሺܶሻ (Line 4-11ܥܲ݊ܽܥ

IPC-MB). 

Lemma 4 Given ܺ ∈ ܶ ሺܶሻ, ifܥܲ݊ܽܥ ∈  ,ሺܺሻܥܲ݊ܽܥ

  .ሺܺሻ contains candidate spouses of ܶ if there areܥܲ݊ܽܥ

Proof. Theorem 2 tells us that ܥܲ݊ܽܥሺܺሻ contains all 

parents/children of ܺ. Given ܺ ∈ ܶ ሺܶሻ, ifܥܲ݊ܽܥ ∈

 ሺܺሻ, then ܺ is known as a true parent/child (Lemmaܥܲ݊ܽܥ

3). If ܺ is a common child of ܶ and ܻ, ܻ is known as ܶ’s 

spouse, and it should be contained in ܥܲ݊ܽܥሺܺሻ. This 

applies to all such Y, so all of them should be contained in 

 █ .ሺܺሻܥܲ݊ܽܥ

All outputs of RecognizePC(ܺ) regarding to each 

ܺ ∈ ܵ݊ܽܥ ሺܶሻ are cached asܥܲ ்ܲ, (Line 9, IPC-MB) with 

index (ܶ,X) for later reference. Obviously, they contain 

more than what we expect: 

 ܶ, since ܶ ∈  ሺܺሻ, which would be ignoredܥܲ݊ܽܥ

(Line 14, IPC-MB);  

 True parents and/or children of ܶ, which would be 

ignored as well since they are already in MB(ܶ) 

(Line 14, IPC-MB), requiring no extra effort; 

 True spouses of ܶ, i.e. those having ܺ as their child 

as ܶ. These are what we are interested to 

distinguished here; 

 False positives, neither parents, children nor spouses 

of ܶ. ܶ’s descendants, if there are in ܥܲ݊ܽܥሺܶሻ, 

would be ignored to save computing resource (Line 

14, IPC-MB) since they are impossibly to be ܶ’s 

spouses .  

Lemma 5 Given ܥܲ݊ܽܥሺܶሻ=RecognizePC(ܶ), ܵሺܶሻ ⊏

∪ ܺ ሺܺሻ，whereܥܲ݊ܽܥ ∈ ܶ ሺܶሻ andܥܲ݊ܽܥ ∈

ሺܶሻܵ .ሺܺሻ, i.eܥܲ݊ܽܥ ⊏∪∈ሺ்ሻ   .ሺܺሻܥܲ݊ܽܥ

Proof. Given Lemma 4, the proof is trivial. █ 

With Lemma 5, it is known that ∪∈ሺ்ሻ  ሺܺሻܥܲ݊ܽܥ

contain all candidate spouses of ܶ, by Line 12 of IPC-MB, 

and they are denoted with shorthand ܲܵ݊ܽܥሺܶሻ. Similarly 

to the discovery of ܲܥሺܶሻ, we depend on the underlying 

connectivity information to recognize ܵሺܶሻ from 

ܺ ሺܶሻ. For anyܲܵ݊ܽܥ ∈  ሺܶሻ, there are two facts availableܵ

for reference: (1) it must belong to ܲܥሺܻሻ for some ܻ ∈

 ሺܶሻ, where ܻ is the common child of ܺ and ܶ; (2) it isܥܲ

independent with T as conditioned on ்ܵ݁ݐ݁ݏ, or 

 ሺܶሻ , but itܥܲ ,் (that is why it is not included inݐ݁ݏ݁ܵ

should be dependent with ܶ as conditioned on ்ܵ݁ݐ݁ݏ, ∪

ሼܻሽ or ܵ݁ݐ݁ݏ,் ∪ ሼܻሽ. The first observation is obvious 

given the underlying topology, and the second is based on 

Theorem 1.  

Lemma 6 In IPC-MB, for each ܺ ∈ ሺܶሻbutܺܲܵ݊ܽܥ ∉

,்ݐ݁ݏ݁ܵ ሺܶሻ, eitherܥܲ ് ்,ݐ݁ݏ݁ܵ or ܮܫܰ ്  Note) ܮܫܰ

that  means empty set, while ܰܮܫ means NULL pointer). 

Proof. If ܺ ∉  ሺܶሻ, obviously it fails some statisticalܥܲ

test ܫሺܶ,  ሻin RecognizePC(T) or RecognizePC(X), andࡿ|ܺ

 ,் then at Line 8ݐ݁ݏ݁ܵ  or,்ݐ݁ݏ݁ܵ must be assigned to ࡿ

of ReconigzePC. █ 

Due that either ்ܵ݁ݐ݁ݏ, or ܵ݁ݐ݁ݏ,் may be NULL, it 

is necessary to check them before the assignment at Line 15 

of IPC-MB.  
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Theorem 5  Given ܺ ∈  ሺܺሻ byܥܲ݊ܽܥ ሺܶሻ andܥܲ

RecognizePC(ܺ), for each ܻ ∈ \ሺܶሻܤܯ\ሺܺሻܥܲ݊ܽܥ

 ሺܶሻ (excluding recognized and descendants of ܶ ifܥܲ݊ܽܥ

there are), if Y  is conditionally dependent with ܶ given 

,்ݐ݁ݏ݁ܵ ∪ ሼܺሽ or ܵ݁ݐ݁ݏ,் ∪ ሼܺሽ (depending on which 

one is not NIL), ܻ is known as a true spouse.  

Proof. Given ܺ ∈ ܻ ሺܶሻ andܥܲ ∈  ሺܺሻ, ܻ can beܥܲ݊ܽܥ

X’s parent, child or descendant of T(Theorem 2). Given 

ܻ ∈   ሺܶሻ, it is secure to declareܥܲ݊ܽܥ\ሺܶሻܤܯ\ሺܺሻܥܲ݊ܽܥ

that ܶ is connected with ܺ, denoted as ܶ െ ܺ,  and ܶ is NOT  

connected with ܻ,denoted as ܻ ↮ ܶ. Besides, due that 

ܻ ∉ ,ሺܶܫ so that ݐ݁ݏ݁ܵ ሺܶሻ, there existsܥܲ  ሻݐ݁ݏ݁ܵ|ܻ

(Lemma 6). Then, we need prove that if ܫሺܶ, ݐ݁ݏ݁ܵ|ܻ ∪

ሼܺሽሻ is NOT true, then ܻ can only be T’s spouse: 

1 ܺ ∈ ܲܽሺܶሻ and ܻ ∈ ܲܽሺܺሻ, i.e. ܻ ∈  ሺܶሻ, thenܦܰ

ܻ → ܺ → ܶ but ܻ ↮ ܶ. To blocking the path ܻ →

ܺ → ܶ, the statement that ܺ ∈  .must be true ݐ݁ݏ݁ܵ

Otherwise, at least we have one non-blocked path, 

which is contradictory to the fact that ܫሺܶ,  .ሻݐ݁ݏ݁ܵ|ܻ

Hence, we still have ܫሺܶ, ݐ݁ݏ݁ܵ|ܻ ∪ ሼܺሽሻ; 

2 ܺ ∈ ܲܽሺܶሻ and ܻ ∈ ܻ.ሺܺሻ, i.e݄ܥ ← ܺ → ܶ but ܻ ↮

ܶ. Same proof as case 1;  

3 ܺ ∈ ܲܽሺܶሻ  and ܻ ∈ ܻ ሺܺሻ. (1) Sinceݏ݁ܦ ∈

ܻ ሺܺሻ andܥܲ݊ܽܥ ∈  ሺܺሻ, there must exist, at leastݏ݁ܦ

one, non-blocked path ܻ െ⋯െ ܺ. (2) Because 

ܻ ∉  ሺܶሻ, all paths connecting Y and T must beܥܲ

blocked by some ܵ݁ݐ݁ݏ. Given one such non-blocked 

path ܻ െ⋯െ ܻ ݐ ݁ݑ݀) ܺ ∈  ሺܺሻሻ, it isܥܲ݊ܽܥ

extendable to access ܶ via X, i.e. ܻ െ⋯െ ܺ → ܶ. To 

ensure the d-separation (݀ݐ ݁ݑ ܻ ∉  ሺܶሻሻ, thisܥܲ

path ܻ െ⋯െ ܺ → ܶ has to be blocked, hence X has 

to be observed, i.e. ܺ ∈ ܻ ,Otherwise .ݐ݁ݏ݁ܵ െ⋯െ

ܺ → ܶ will keep open (since there is no chance to 

construct a converging pattern here with the existing 

of ܺ → ܶ), which is contradictory to the fact that 

,ሺܶܫ ܺ ሻ. Sinceݐ݁ݏ݁ܵ|ܻ ∈  we still have ,ݐ݁ݏ݁ܵ

,ሺܶܫ ݐ݁ݏ݁ܵ|ܻ ∪ ሼܺሽሻ; 

4 ܺ ∈ ܻ ሺܶሻ and݄ܥ ∈ ܲܽሺܺሻ, i.e.ܻ → ܺ ← ܶ but Y ↮

T. It is easy to prove that adding ܺ does make the path 

ܻ → ܺ ← ܶ non-blocked, i.e. ܵ݁ݐ݁ݏ ∪ ሼܺሽ won’t d-

separates ܻ and ܶ anymore, and ܻ is known as a true 

spouse successfully; 

5 ܺ ∈ ܻ ሺܶሻ and݄ܥ ∈ ܻ .ሺܺሻ, i.e݄ܥ ← ܺ ← ܶ but 

Y ↮ T. Same as case 1; 

6 ܺ ∈ ܻ ሺܶሻ and݄ܥ ∈   .ሺܺሻ. Similar proof as case 3ݏ݁ܦ

These six cases cover all possible happenings, so the proof 

itself is complete. It is noticed that only true spouse of ܶ will 

fail the statistical test at Line 15 (IPC-MB), and be added to 

 █ .ሺܶሻܤܯ

Theorem 6 Under the assumptions that the independence 

tests are correct and that the learning data ܦ is an 

independent and identically distributed sample from a 

probability distribution ܲ faithful to a DAG ܩ, all spouses of 

ܶ are found with IPC-MB.  

Proof. By Lemma 5, it is known that ܲܵ݊ܽܥሺܶሻ contains 

all spouses of ܶ. With ∀ܻ ∈ \ሺܶሻܤܯ\ሺܺሻܥܲ݊ܽܥ

 ሺܶሻ, it will be correctly recognized if it is true spouseܥܲ݊ܽܥ

(Theorem 5). Since this checking applies to all variables in 

  █ .ܶ ሺܶሻ, we are able to find all spouses ofܲܵ݊ܽܥ

Therefore, IPC-MB is able to find the true parents and 

children of T first, and further enables us to find the true 

spouses of T based on previous outcome.  

 

IV. EMPIRICAL STUDY 

In this section, we compare IPC-MB with two 

competitive and most cited works, IAMB and PCMB. 

Besides, we also include PC algorithm into study 

considering that it is the most known Bayesian network 

structure learning algorithm. Data sampled from four 

networks are used for experiments. Table 1 gives a brief 

introduction of the four networks. Asia and Alarm are 

known Bayesian network; PolyAlarm is one polytree 

derived from Alarm; Test152 is one example network, along 

with PolyAlarm, as included in the BNJ 

(http://bnj.sourceforge.net, one well-known open source 

Bayesian network processing software) installation package. 

Therefore, our experiments cover four algorithms, including 

local and global search; besides, we study their behavior 

given tiny, medium, large and polytree Bayesian networks.  

 

TABLE 1.  SUMMARY OF THE FOUR BAYESIAN NETWORKS USED IN OUR 

EXPERIMENTS. 

Name # of Nodes # of Arcs Size of Largest MB 
Asia 8 8 5 
Alarm 37 46 8 
PolyAlarm 37 36 8 
Test152 152 200 5 

 

We are interested to measure the accuracy and time 

efficiency of the algorithms. Regarding the accuracy, we run 

IAMB, PCMB and IPC-MB with each node of BN as the 

target variable ܶ, and then report the average precision and 

recall. Precision is the number of true positives in the output 

divided by the number of nodes in the output. Recall is the 
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number of true positives in the output divided by the number 

of true positives in the BN. We also combine precision and 

recall as  

distance ൌ ඥሺ1 െ precisionሻଶ  ሺ1 െ recallሻଶ 

to measure the Euclidean distance from perfect precision 

and recall. The significance level for the independence test 

is 0.05. PC algorithm is ran to induce the whole network, 

and average precision and distance are measured similarly.  

The time efficiency is measured by the number of data 

passes and CI tests as required. It is easy to understand why 

we measure the times of CI tests, considering that all these 

algorithms are built on statistical tests. Regarding the data 

pass, it is defined as scanning the data file for one time. 

Because it involves disk operation, and the number of 

observations may be very large, scanning the whole data 

may be quite time consuming. This measure normally is 

ignored in theoretical work, but it may be influential to the 

actual timing cost in practice where it is possible to cache all 

instances or related frequency counts in memory. In our 

implementation, we construct necessary contingency tables 

only when know they are required, and one data pass is 

consumed for the collection of related frequencies. For 

example, in IPC-MB, we need a scan of the data for 

different cutSetSize in RecognizePC since the size of 

conditioning set, as well as the adjacency set, change. To 

make the comparison fair, we try our best to cache all 

expected frequencies within a data pass.  

Similarly we report the average number of data passes 

and CI tests as required by IAMB/PCMB/IPC-MB to induce 

the corresponding Markov blanket given different node as 

target, and the number of CI tests as reported about PC is 

that required by it to induce the whole Bayesian network. 

This will give us chance to compare the relative efficiency 

between local and global search. Given each BN, 

experiments with different sample size are conducted, and 

10 groups of samples are prepared given each different 

sample size.  

V. CONCLUSION 

In this paper, we briefly review related algorithms for 

inducing ܤܯሺܶሻ since it is believed as the optimal feature 

subset for the prediction of  ܶ. Then, we introduce how IPC-

MB works, alone with proof of its correctness. Experiments 

are conducted to compare IPC-MB with IAMB, PCMB and 

PC. From Table 2 and Table 3, we observe that (1) IPC-MB 

has the best accuracy performance among the four 

algorithms, given the same amount of instances; (2) IAMB 

is quite poor on accuracy performance, though it is expected 

fastest among the four algorithms; (3) PCMB is much 

slower than IPC-MB and IAMB, and may even be slower 

than PC, though it declares as local search; (4) By local 

search, IPC-MB reduces the time complexity greatly as 

compared with PC which induces the Markov blanket by 

learning the whole Bayesian network first.  
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 TABLE 2.  AVERAGE ACCURACY (INCLUDING PRECISION, RECALL AND 

DISTANCE) ABOUT IAMB/PCMB/IPC-MB/PC GIVEN SMALL TO LARGE 

PROBLEMS  

 

BN Instances Algorithm 
 

Precision Recall Distance 

Asia 

100 

IAMB .55±.08 .51±.09 .72±.10 
PCMB .55±.11 .49±.17 .76±.15 

IPC-MB .55±.11 .47±.17 .77±.16 
PC .55±.14 .60±.26 .71±.13 

4000 

IAMB .85±.07 .82±.09 .26±.11 
PCMB .86±.04 .76±.11 .31±.10 

IPC-MB .87±.02 .76±.07 .30±.08 
PC .83±.05 .74±.08 .35±.08 

Alarm 

500 

IAMB .57±.02 .55±.02 .67±.04 
PCMB .86±.03 .78±.04 .31±.05 

IPC-MB .85±.02 .77±.04 .32±.04 
PC .77±.05 .78±.03 .37±.04 

4000 

IAMB .51±.03 .59±.02 .68±.03 
PCMB .97±.02 .94±.03 .07±.04 

IPC-MB .99±.01 .95±.01 .06±.03 
PC .97±.01 .94±.02 .09±.03 

PolyAlarm 

500 

IAMB .64±.03 .71±.03 .53±.04 
PCMB .84±.05 .75±.04 .33±.07 

IPC-MB .85±.05 .74±.04 .33±.07 
PC .76±.07 .72±.05 .43±.08 

2000 

IAMB .65±.02 .89±.01 .42±.02 
PCMB .93±.02 .89±.02 .14±.02 

IPC-MB .93±.01 .90±.03 .13±.04 
PC .83±.03 .83±.02 .29±.04 

Test152 

250 

IAMB .54±.03 .74±.00 .59±.01 
PCMB .89±.02 .71±.01 .37±.02 

IPC-MB .90±.02 .71±.01 .36±.01 
PC .72±.03 .71±.01 .49±.02 

2000 

IAMB .44±.01 .93±.01 .58±.01 
PCMB .93±.01 .96±.02 .11±.02 

IPC-MB .95±.01 .96±.02 .09±.02 
PC .78±.02 .96±.01 .25±.02 

 

TABLE 3.  AVERAGE TIME EFFICIENCY MEASURED BY THE NUMBER OF CI 

TESTS  AS REQUIRED BY  IAMB/PCMB/IPC-MB/PC GIVEN SMALL TO 

LARGE PROBLEMS  

 

BN Instances Algorithm #Data 
Passes 

#CI Tests 

Asia 

100 

IAMB 5±1 25±3 
PCMB 80±87 2006±3673 

IPC-MB 10±7 188±288 
PC 26±9 213±267 

4000 

IAMB 5±0 23±1 
PCMB 50±7 436±84 

IPC-MB 8±1 84±9 
PC 26±4 139±10 

Alarm 

500 

IAMB 5±0 116±2 
PCMB 160±11 4638±374 

IPC-MB 12±1 561±31 
PC 220±16 2736±82 

4000 

IAMB 7±0 187±4 
PCMB 218±6 16007±1326 

IPC-MB 14±0 849±48 
PC 211±18 3902±122 

PolyAlarm 

500 

IAMB 4±0 106±3 
PCMB 47±3 584±48 

IPC-MB 7±0 143±8 
PC 117±16 1061±48 

2000 

IAMB 5±0 147±2 
PCMB 59±2 837±57 

IPC-MB 9±0 179±6 
PC 158±24 1223±35 

Test152 

250 

IAMB 5±0 750±1 
PCMB 89±4 3757±148 

IPC-MB 11±0 924±28 
PC 608±3 19803±392 

2000 

IAMB 8±0 1041±2 
PCMB 148±3 5928±174 

IPC-MB 15±0 1432±46 
PC 684±80 26173±593 
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