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Abstract—This paper summarizes the related works about 

feature selection via the induction of Markov blanket which 

can be traced back to 1996, and the concept of Markov blanket 

itself firstly appeared even earlier in 1988. Our review not only 

covers a series of published algorithms, including KS, GS, 

IAMB and its variants, MMPC/MB, HITON-PC/MB, Fast 

IAMB, PCMB and IPC-MB (ordered as their appearing time), 

but why they were invented and their relative advantage as 

well as disadvantages, from both theoretical and practical 

viewpoint. Besides, it is noticed that all of these mentioned 

works are all constraint learning which depends on conditional 

independence test to induce the target, instead of via score-and-

search, another mainstream manner as applied in the structure 

learning of one closely related concept, Bayesian network. Bing 

the first one, we discuss the cause which uncovers that this 

choice is not accidental, though not in a formal way. The 

discussion covered here is believed a valuable reference for 

academic researchers as well as applicants. 

 

Index Terms—Feature selection, Markov Blanket.  

 

I. INTRODUCTION 

As of 1997, when a special issue (of the journal of Artificial 

Intelligence) on relevance including several papers on 

variable and feature selection was published [1], [2], few 

domains explored used more than 40 features. The situation 

has changed considerably in the past decade, and currently 

domains involving many more variables, hundreds to 
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thousands, are becoming common. Therefore, feature 

selection has been an active research area in pattern 

recognition, statistics and data mining communities. The 

main idea of feature reduction is to select a subset of input 

variables by eliminating features with little or no predictive 

ability, but without scarifying the performance of the model 

built on the chosen features. It is also known as variable 

selection, feature reduction, attribute selection or variable 

subset selection. By removing most of the irrelevant and 

redundant features from the data, feature reduction brings 

many potential benefits to us:  

 Alleviating the effect of the curse of dimensionality 

to improve prediction performance; 

 Facilitating data visualization and data 

understanding, e.g. which are the important features 

and how they are related with each other; 

 Reducing the measurement and storage 

requirements; 

 Speeding up the training and inference process; 

 Enhancing model generalization. 

A principle solution to the feature reduction problem is to 

determine a subset of features that can render of the rest of 

whole features independent of the variable of interest [3], 

[4], [5]. From a theoretical perspective, it is known that 

optimal feature reduction for supervised learning problems 

requires an exhaustive search of all possible subsets of 

features of the chosen cardinality, of which the complexity 

is known as exponential function of the size of whole 

features. In practice, the target is demoted to a satisfactory 

set of features instead of an optimal set due to the lack of 

efficient algorithms.  

Feature selection algorithms typically fall into two 

categories, feature ranking and subset selection. Feature 

ranking ranks all variables by a metric and eliminates those 

that do not achieve an adequate score. Selecting the most 

relevant variables is usually suboptimal for building a 
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predictor, particularly if the variables are redundant. In other 

words, relevance does not imply optimality [2]. Besides, it 

has been demonstrated that a variable which is irrelevant by 

itself can provide a significant performance improvement 

when taken with others [2], [6].  

Subset selection, however, evaluates a subset of features 

that together have good predictive power, as opposed to 

sorting variables according to their individual relevance. 

Essentially it can be divided into wrappers, filters and 

embedded [6]. In the wrapper approach, the feature selection 

algorithm conducts a search through the space of possible 

combination of features and evaluates each subset by 

utilizing the learning algorithm of interest as a black box [2]. 

Wrappers can be computationally expensive because model 

training and cross-validation must be repeated over each 

feature subset, and the outcome is tailored to a particular 

model. Filters are similar to wrappers in the search 

approach, but instead of evaluating against a predictor, a 

simple filter is utilized as preprocessing. Therefore, filters 

work independent of the chosen predictor. However, filters 

have the similar weakness as feature ranking since they 

imply that irrelevant features are useless though it is proved 

not true [2], [6]. Embedded methods perform variable 

selection in the process of training and are usually specific 

to given learning algorithms. Compared with wrappers, 

embedded methods may be more efficient in several 

respects: they make better use of the available data without 

having to split the training data into a training and validation 

set; they reach a solution faster by avoiding retraining a 

predictor from scratch for every variable subset to 

investigate [6]. Embedded methods are found in decision 

trees such as CART, for example, which have a built-in 

mechanism to perform variable selection [7].  

Koller and Sahami (KS) [3] first showed that the Markov 

blanket (MB) of a given target variable ܶ is the theoretically 

optimal set of features to predict ܶ’s value, although 

Markov blanket itself is not a new concept and can be traced 

back to the work of Pearl [8] in 1988. Based on the findings 

that the full knowledge of ܤܯሺܶሻ is enough to determine 

the probability distribution of  ܶ and that the values of all 

other variables become superfluous, inducing ܤܯሺܶሻ 

actually is a procedure of feature selection [3, 4, 9]. From 

our point of view, Markov blanket based feature selection 

can be categorized into filters, which means that it works 

independently of the later processing. Therefore, it is 

expected to be much more efficient than wrapper 

approaches. Furthermore, it conquers the defect of 

conventional filters, with an output containing only relevant 

and useful attributes. Compared with embedded ways, it is 

obviously a more general choice and could work with all 

learning algorithms.  

Since KS’s work in 1996, there are several attempts to 

make the learning procedure more efficient and effective, 

including GS (Grow-Shrink) [10], IAMB (Iterative 

Associative Markov Blanket) and its variants [4, 9], 

MMPC/MB (Max-Min Parents and Children/Markov 

Blanket) [11], HITON-PC/MB [12], Fast-IAMB [13], 

PCMB (Parent-Children Markov Blanket learning) [5] and 

IPC-MB (Iterative Parent and Children Markov Blanket 

learning, or with another name BFMB) [14, 15].  

In Section 2, the Markov blanket itself is defined, as well 

as its relation with Bayesian Network. Then, in Section 3, 

we review all major algorithms on learning Markov blanket. 

In Section 4, we discuss why all these algorithms are 

constraint learning, instead of score-and-search, another 

primary family of algorithms for inducing Bayesian 

Network. We conclude with a summary about all algorithms 

covered in this paper for quick reference.  

 

II. BAYESIAN NETWORK AND MARKOV BLANKET 

Bayesian network is a graphical tool that compactly 

represents a joint probability distribution ܲ over a set of 

random variables ܃  using a directed acyclic graph (DAG) ܩ 

annotated with conditional probability tables of the 

probability distribution of a node given any instantiation of 

its parents. Therefore, the graph represents qualitative 

information about the random variables (conditional 

independence properties), whiles the associated probability 

distribution, consistent with such properties, provides a 

quantitative description of how the variables related to each 

other. One example of Bayesian network is shown in Fig.1. 

The probability distribution ܲ and the graph ܩ of a Bayesian 

network are connected by the Markov condition property: a 

node is conditionally independent of its non-descendants, 

given its parents.  

Definition 1 (Faithfulness). A Bayesian network ܩ and a 

joint distribution ܲ are faithful to one another iff. every 

conditional independence entailed by the graph ܩ and the 

Markov condition is also presented in ܲ [8, 16].  
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Given the faithfulness assumption, the Markov blanket of 

ܶ is unique, and it becomes trivial to retrieve it from the 

corresponding Bayesian network over the problem domain 

 It is known as composed of ܶ’s parents, children and .܃

spouses (Fig.1). However, this requires the Bayesian 

network to be ready in advance. Indeed, traditionally, we 

have to learn the target Bayesian network first to get the 

Markov blanket of some variable, but the structure learning 

of Bayesian network is known as NP-complete problem. 

Therefore, an ideal solution will allow us to induce the 

Markov blanket but without having to have the whole 

Bayesian network ready first, which, potentially, reduces the 

time complexity greatly so that we can solve larger scale of 

problem with the same computing resource.    

 

 

Fig.1. An example of a Bayesian network. The ܲܥሺܶሻ are the variables in 

gray, while ܤܯሺܶሻ additionally includes the texture-filled variable O. 

  

Definition 2 Markov Blanket (Probability viewpoint). 

Given the faithfulness assumption, the Markov blanket of T 

is a minimal set conditioned on which all other nodes are 

independent of  T, i.e.∀X ∈ U\MBሺTሻ\ሼTሽ, IሺX, T|MBሺTሻሻ.  

Definition 3 Markov Blanket (Graphical viewpoint). 

Given the faithfulness assumption, the Markov blanket of T 

is identical to T’s parents, children and children’ parents 

(spouses), i.e. MBሺTሻ ൌ PaሺTሻ⋃ChሺTሻ⋃SpሺTሻ.  

Theorem 1. If a Bayesian network G is faithful to a joint 

probability distribution P, then: (1) There is an edge 

between the pair of nodes X  and Y iff. X and Y are 

conditionally dependent given any other set of nodes; (2) for 

each triplet of nodes X, Y and Z  in G such that X and Y are 

adjacent to Z but X is not adjacent to Y, X → Z ← Y is a 

subgraph of G iff. X and Y are dependent conditioned on 

every other set of nodes that contains Z [17].  

Given the faithfulness assumption, Definition 2 and 

Definition 3 define the Markov blanket from probability and 

graphical view respectively.  

Definition 3 plus Theorem 1 are the topology information 

as referred by more recent and finer algorithms such as 

MMPC/MB, HITON-PC/MB, PCMB and IPC-MB. Of 

course, faithfulness assumption is the basis for all, including 

GS, IAMB and its variants. Lucky enough, the vast majority 

of distributions are faithful in the sample limit [18]. 

 

III. ALGORITHMS FOR LEARNING MARKOV BLANKET (1996 

– PRESENT) 

A. KS 

Pearl is the first one to define the concept and study the 

property of Markov blanket in his early work on Bayesian 

network [8]. However, Koller and Sahami’s work towards 

optimal feature selection is the original one to recognize that 

Markov blanket of the target of interest is the theoretically 

optimal set of features to predict its value [3]. Their finding 

attracted many following trials aiming at inducing the 

Markov blanket with better performance in the past decade.  

Koller and Sahami proposed a theoretically justified 

framework for optimal feature selection based on using 

cross-entropy to minimizing the amount of predictive 

information lost during feature elimination [3]. They also 

proposed one approximate algorithm based on their 

theoretical model, and this algorithm is referred as KS by 

many since then. KS is the first algorithm for feature 

selection to employ the concept of Markov blanket. 

Although it is theoretically sound, the proposed algorithm 

itself doesn’t guarantee correct outcome. KS algorithm 

requires two parameters: (1) the number of variables to 

retain, and (2) the maximum number of variables the 

algorithm is allowed to condition on. These two limits are 

helpful to reduce the search complexity greatly, but with a 

sacrifice of correctness [4], [5].  

B. GS 

The GS algorithm [10] was proposed in 1999 to induce 

the Bayesian network automatically by first identifying each 

node’s Markov blanket, then connecting nodes in a 

maximally consistent way. It employs independence 

properties of the underling network to discover parts of its 

structure, just like the SGS and PC algorithms in [17]. 

However, the design of GS enables it to address the two 

known shortcomings of previous work which are preventing 
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them from becoming more widespread. These two 

disadvantages are: exponential execution time and 

proneness to errors in dependence tests used. The former 

one is addressed in two ways. One is by identifying the local 

neighborhood of each variable in the Bayesian network as a 

pre-processing step in order to facilitate the recovery of the 

local structure around each variable in polynomial time 

under the assumption of bounded neighborhood size. The 

second, randomized version goes one step further, 

employing a user-specific number of randomized tests in 

order to ascertain the same result with high probability. The 

second disadvantage of this research approach, namely 

proneness to errors, is also addressed by the randomized 

version, by using multiple data sets and Bayesian 

accumulation of evidence.  

Like the constraint-based learning algorithm, GS depends 

on two basic assumptions, faithfulness and correct/reliable 

conditional independence (CI) test. Here, the second 

assumption is required in practice since only when the 

number of observations is enough, the result of one 

statistical testing would be trustable. Actually, these two 

assumptions are also the basis of the following algorithms. 

As its name indicates, GS proceeds in two steps, growing 

greedily first then shrinking by removing false positives. It 

is the first algorithm proved correct, but it is not efficient 

and can’t scale to large scale applications. However, the 

soundness of the algorithm makes it a proven subject for 

future research.  

In [10], Margaritis and Thrun also proposed one 

randomized version of GS algorithm to solve problems 

involving large amount of variables or variables with many 

possible values. It requires manually defined parameter to 

reduce the number of conditional tests, similar to KS 

algorithm; hence, it cannot guarantee correct output, and it is 

ignored without further discussion. 

C. IAMB and Its Variants 

IAMB was proposed in 2003 for classification problems 

in microarray research where thousands of attributes are 

quite common. It is an algorithm based on the same two 

assumptions of GS, sound in theory and especially simple in 

implementation. IAMB algorithm is structurally similar to 

GS, consisting of two phases – growing and shrinking. 

However, there is one important difference: GS orders the 

variables when they are considered for inclusion in the first 

step, according to their strength of association with ܶ given 

the empty set. It then admits into candidate ܤܯሺܶሻ the next 

variable in the ordering that is not conditionally independent 

with ܶ given the current ܤܯሺܶሻ. One problem with this 

heuristic is that when the ܤܯሺܶሻ contains spouses of ܶ, the 

spouses are typically associated with ܶ very weakly given 

the empty set and are considered for inclusion in the ܤܯሺܶሻ 

late in the first phase (associations between spouses and ܶ 

are only through confounding/common descendant 

variables, thus they are weaker than those ancestors’ 

associations with ܶ). In turn, this implies that more false 

positives will enter ܤܯሺܶሻ during the first step and the 

conditional tests of independence will become unreliable 

much sooner than when using IAMB’s heuristic. In IAMB, 

it reorders the set of attributes each time a new attribute 

enters the blanket in the growing phase based on updated CI 

testing results, which allows IAMB to perform better than 

GS since fewer false positives will be added during the first 

phase [4, 13].  

In spite of the improvement, IAMB is still not data 

efficient since its CI tests may conditioned on the whole 

 ሺܶሻ or even larger set due to its design, though this is notܤܯ

necessary as discovered by later work. This point is also 

noticed by its authors, and several variants of IAMB were 

proposed, like interIAMB, IAMBnPC and their combined 

version interIAMBnPC [9]. InterIAMBnPC employs two 

methods to reduce the possible size of the conditioning sets: 

(1) it interleaves the growing phase of IAMB with the 

pruning phase attempting to keep the size of ܤܯሺܶሻ as 

small as possible during all steps of the algorithm’s 

execution; (2) it substitutes the shrinking phase as 

implemented in IAMB with the PC algorithm instead. 

InterIAMB and IAMBnPC are similar to InterIAMBnPC but 

they only either interleave the first two phases or rely on PC 

for the backward phase respectively.  

D. MMPC/MB 

Although variants of IAMB achieve better performance 

on data efficiency than IAMB, it is still far from 

satisfactoriness. Breakthrough was not made till the 

introduction of MMPC/MB in which the sample 

requirement depends on the underlying connectivity as 

present in the target graph faithful to the data, instead on the 

size of the Markov blanket as required by previous 

algorithms.  
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The overall MMMB algorithm is composed of two steps. 

Firstly, it depends on MMPC to induce which are directly 

connected to ܶ, i.e. ܲܥሺܶሻ. Then it attempts to identify the 

remaining nodes, i.e. spouses of ܶ. The spouses of ܶ are the 

parents of the common children ofܶ, which suggests that 

they should belong to ∪௑∈௉஼ሺ்ሻ  ሺܺሻ. So, MMPC isܥܲ

applied to each ܺ ∈  ሺܶሻ to induce ܺ’s parents andܥܲ

children, which are viewed as spouse candidates which 

contains false ones to be filtered out with further checking. 

To determine if  ܻ ∈∪௑∈௉஼ሺ்ሻ  ሺܺሻ  is a spouse, weܥܲ

actually need to recognize the so-called v-structure, i.e. 

ܻ → ܺ ← ܶ. Therefore, the underlying connectivity is 

critical for us to do the induction, and Theorem 1 tells us 

how to determine the corresponding connectivity.  

Although the algorithm MMPC/MB is proved not sound 

by Pena et al. [5], the proposed direction gets recognized by 

many. HITON-PC/MB, PCMB and IPC-MB all follow the 

similar two-phase framework of MMPC/MB.   

E. HITON-PC/MB 

HITON-PC/MB [12] is also the work by the authors of 

IAMB, and can be viewed as a trial to further make the 

induction of Markov blanket more data efficient to meet the 

challenge in practice  

As mentioned by the end of 3.4, HITON-PC/MB works in 

a similar manner as MMPC/MB, with the exception that it 

interleaves the addition and removal of nodes, aiming at 

removing false positives as early as possible so that the 

conditioning set is as small as possible. Unfortunately, 

HITON-PC/MB is also proved not sound in [5].  However, 

it is still viewed as another meaningful trial for an efficient 

learning algorithm of Markov blanket without having to 

learn the whole Bayesian network. 

F. Fast-IAMB 

Fast-IAMB [13] is the work by the author of GS too. 

Similar to GS and IAMB, Fast-IAMB contains a growing 

phase and a shrinking phase. During the growing phase of 

each iteration, it sorts the attributes that are candidates for 

admission to ܤܯሺܶሻ from most to least conditionally 

dependent, according to a heuristic function ݄ሺܩଶ 

conditional statistical test). Each such sorting step is 

potentially expensive since it involves the calculation of the 

 ଶ test value between ܶ and each member of ܵ whichܩ

contains those left un-checked. The key idea behind Fast-

IAMB is to reduce the number of such tests by adding not 

one, but a number of attributes at a time after each 

reordering of the remaining attributes following a 

modification of the Markov blanket. Fast-IAMB 

speculatively adds one or more attributes of highest ܩଶtest 

significance without resorting after each modification as 

IAMB does, which (hopefully) adds more than one true 

members of the blanket. Thus, the cost of re-sorting the 

remaining attributes after each Markov blanket modification 

can be amortized over the addition of multiple attributes.  

The question arises: how many attributes should be added 

to the blanket in each iteration? The following heuristic is 

used in [13]: dependent attributes are added as long as the 

conditional independence tests are reliable, i.e. there is 

enough data for conducting them. 

In conclusion, Fast-IAMB realizes a fast induction by 

adding greedily as many candidates as possible in the 

growing phase.  

G. PCMB 

Following the idea of MMPC/MB and HITON-PC/MB, 

PCMB [5] was also proposed to conquer the data 

inefficiency problem of IAMB, and, more importantly, it is 

the first such trial proved sound theoretically.  

PCMB requires the same two assumptions as needed by 

MMPC/MB and HITON-PC/MB: faithfulness and correct 

statistical test. Similarly, PCMB induces MB via the 

recognition of direct connection, i.e. parents and children 

about any variable of interest, just like how MMPC/MB and 

HITON-PC/MB do, which may explain where its name 

comes from.   

PCMB claims to scale to thousands of features as IAMB 

does [5], but it is able to achieve much higher accuracy 

performance than IAMB given the same amount of data [14, 

16], which exactly reflects its data efficiency advantage. 

However, when given ENOUGH training data, which means 

that both algorithms can search as further as they can, 

PCMB is known as much more time-consuming than IAMB 

to achieve the same result. Unfortunately, we rarely have 

such ideal condition in practice, and very often, given 

limited instances, we have to stop the search due to 

unreliable statistical tests. In conclusion, what gain by finer 

algorithm like PCMB is exchanged with more consumption 

on computing resource, as compared to ̏naïve  ̏ one like 

IAMB. 
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H. IPC-MB 

IPC-MB [15], or BFMB in its first publication version 

[14], is the most recent progress as published on this topic, 

aiming at even better performance than PCMB. It has 

similar framework to MMPC/MB, HITON-PC/MB and 

PCMB by recognizing firstly those directly connected to ܶ, 

known as candidate parents and children; then, it repeats the 

local search given each candidate as found, which not only 

enables us to recognize those false positives, but candidate 

spouses. Correct spouses are recognized further based on the 

second point of Theorem 1.  

Compared with PCMB, IPC-MB determines the 

connectivity of any pair of variables in a “smarter” manner, 

and the overall heuristic as followed by IPC-MB is 

described as below:  

 IPC-MB proceeds by checking and removing false 

positives. Considering that the size of ܤܯሺܶሻ is 

normally much smaller than ܃, filtering out 

negatives is believed to be much easier a job than 

directly recognizing positives; 

 Recognizing and removing as many, and as early, 

negatives as possible is an effective way to reduce 

noise and to avoid conditioning on unnecessarily 

large conditioning set, which is the precondition for 

reliable CI tests and for the success of learning. 

Besides, it saves the computing time by prevent 

needless tests; 

 IPC-MB filters negatives by conditioning on empty 

set on. Then, one variable is allowed for the 

conditioning set, and the checking continues on. This 

procedure iterates with increased conditioning set, 

resulting with more and more negatives are removed. 

So, it is obvious that the decision on a negative is 

made with as small conditioning set as possible, and 

as early as possible as well, which is the most factor 

for the success of IPC-MB considering that the 

reliability of CI test is the most factor to influence 

the performance of such kind of algorithms. 

IPC-MB is declared with best trade-off among all 

published works of this type, in terms of soundness, time 

efficiency, data efficiency and information found [15, 16].  

 

IV. WHY ALL CONSTRAINT LEARNING 

Regarding the structure learning of Bayesian network, 

there are two primary approaches, i.e. constraint-based 

learning and score-and-search. With constraint-based 

learning, it depends on a series of conditional independence 

(CI) to induce a Bayesian network in agreement with test 

results. However, with score-and-search, it defines a global 

measure (or score) which evaluates a given Bayesian 

network model as a function of the data. Then, it searches 

the space of possible Bayesian network models with the goal 

of finding one with optimal score. In the past years, score-

and-search approach has received more attention due to 

several known advantages [19].  

With the fact that Markov blanket actually is part of the 

target Bayesian network given the faithfulness assumption, 

is it possible to apply these two mature frameworks in 

learning Markov blanket? Even though the score-and-search 

approach attracted more attention in the past decade over 

constraint learning to induce Bayesian network structure, it 

is constraint learning that more preferred and experimented 

by researchers on Markov blanket learning. IAMB and its 

variants, GS, MMPC/MB, HITON-PC/MB, PCMB and 

IPC-MB are all such examples. We believe this is not 

accidental even though there is no explicit explanation on 

the choice in published articles, so we are going to share 

with some to make up this loss, though not in a formal 

manner.  

Given a problem on ܃, we don’t know how many 

variables belonging to ܤܯሺܶሻ, saying nothing of which 

ones exactly. With search-and-score approach, we have to 

measure all possible subsets ܃∗ ⊑  ,܃ i.e. the power set of ,܃

of which the complexity is 2|܃|, NP-complete. KS algorithm 

executes in a similar manner, and it requires specifying the 

target size of ܤܯሺܶሻ. Though specifying the size of ܤܯሺܶሻ 

could limit KS’s running in a predictable scale of space, 

obviously it may prevent KS from producing correct results 

since it is impossible to “guess” the exact size of the target 

 ሺܶሻ each time. So, even assuming that we could define aܤܯ

perfect measure (or scoring mechanism), it is not acceptable 

in practice if we have to do the search in an exponentially 

expanding space. Therefore, a more affordable as well as 

sound solution to induce ܤܯሺܶሻ is expected. To achieve 

this goal, some additional guidance is needed to figure out a 

finer search strategy, i.e. “constraining” the search in a more 

efficient manner so that as much as possible fruitless effort 

can be avoided. With the property of Markov blanket, i.e. ܶ 

is independent of any ܺ ∉  ሺܶሻܤܯ ሺܶሻ conditioned onܤܯ

and ܶ is dependent on any ܻ ∈  ሺܶሻ conditioned onܤܯ
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 ሺܶሻ\ሼܶሽ, we may reduce the search space greatly and getܤܯ

a more efficient algorithm. IAMB is one such important 

progress, and it indeed excels the previous naïve approach, 

like KS, with obvious gain in efficiency. Since then, all 

effort began to follow the constraint learning approach, 

proposing one after another algorithm aiming at better 

performance with more and more heuristics introduced. Of 

course, the procedure is becoming more and more 

sophisticated, though it is not what we expect.  

 

V. CONCLUSION 

In this paper, we review the published algorithms on 

feature subset selection via the learning of Markov blanket 

given a target of interest. Those covered in the discussion 

are listed in Table 1 for quick reference.  

To the best of our knowledge, IPC-MB achieves the best 

trade-off as compared with others, in term of effectiveness, 

time efficiency, data efficiency and topology information 

inferred.  

Besides, we also discuss why all these algorithms are 

categorized as constraint-based learning, though not in a 

formal manner. 

Table 1.  Conclusion on the related algorithms for learning 

Markov Blanket  

Name Pub. 
Year 

Comments 

KS 1996  Not sound 
 The first one of this type 
 Requires specifying MB size in 

advance 
GS 1999  Sound in theory 

 Proposed to learn Bayesian network 
via the induction of neighbors of each 
variable 

 First proved such kind of algorithm 
 Work in two phases: grow and shrink 

IAMB 
and its 
variants 

2003  Sound in theory 
 Actually variant of GS 
 Simple to implement 
 Time efficient 
 Very poor on data efficiency 
 IAMB’s variants achieve better 

performance on data efficiency than 
IAMB 

MMPC/
MB 

2003  Not sound 
 The first to make use of the underling 

topology information 
 Much more data efficient compared to 

IAMB 
 Much slower compared to IAMB 

HITON
-
PC/MB 

2003  Not sound 
 Another trial to make use of the 

topology information to enhance data 

efficiency 
 Data efficient compared to IAMB 
 Much slower compared to IAMB 

Fast-
IAMB 

2005  Sound in theory 
 No fundamental difference as 

compared to IAMB 
 Add candidates more greedily to 

speed up the learning 
 Still poor on data efficiency 

performance 
PCMB 2006  Sound in theory 

 Data efficient by making use of 
topology information 

 Poor on time efficiency 
 Distinguish spouses from 

parents/children 
 Distinguish some children from 

parents/children 
IPC-
MB 

2007/ 
2008 

 Sound in theory 
 Most data efficient compared with 

previous ones 
 Much faster than PCMB on 

computing 
 Distinguish spouses from 

parents/children 
 Distinguish some children from 

parents/children 
 Best trade-off among this family of 

algorithms 
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