
Sparse Classifier Design Based on the Shapley
Value

Prashanth Ravipally and Dinesh Govindaraj ∗

Abstract—Handheld devices like mobile phones
have very restricted memory and computation en-
vironment. Softwares for Face recognition, Speech
recognition, Handwriting recognition etc which are
developed for mobile phones need to occupy very less
space and should do recognition in real-time. We de-
sign a sparse classifier which aids these applications
by storing very few vectors, recognizing real-time and
still generalizing well. Our Sparse Classifier learns a
function that is a weighted sum of basis functions,
by sequentially appending functions to an initially
empty basis, so that the learnt function minimizes the
norm of squared loss to approximate a target func-
tion. Selection of a smaller set of basis functions from
a dictionary of functions is based on Shapley value,
which is a well known solution concept from game
theory. The basis functions are selected based on the
importance in approximating the decision boundary.
We show how our sparse classification model built on
kernel-based solutions effectively controls the sparsity
of the solution. Experimental comparison with SVMs
demonstrate that the proposed model shows compa-
rable accuracy in benchmark datasets with very few
basis functions resulting in more than 80% reduction
in the number of stored vectors.

Keywords: sparse classifier, support vector machine,

shapley value, mobile applications, generalization

1 Introduction

Handheld devices like mobile phones have very restricted
memory and computational environment. Machine
learning applications such as Face recognition, Speech
Recognition, Handwriting recognition are getting pop-
ular in devices like iPhone and Android. For example
Google App added search by voice feature which enables
searching the web using voice queries runs on iPhone,
Blackberry and other mobile phones. Clearly these
applications which runs on mobile phones needs to
occupy very less space and should do recognition in
real-time. We attempt to speedup the mobile machine
learning applications by designing a spare classifier. Our
sparse classifier will store very few vectors, recognize in
real-time and still generalize well.

∗1. Oracle Corporation India Email:
ravipally.reddy@oracle.com and 2. Bell Labs Research India
Email: dinesh.govindaraj@alcatel-lucent.com

Most of the above mentioned applications follow super-
vised learning paradigm during the training phase. In su-
pervised learning we are given a set of examples of input
vectors {xn}l

n=1 along with their corresponding targets
{yn}l

n=1, the latter of which might be real values (in re-
gression) or class labels {+1, -1} (binary classification).
From this training set we wish to learn a model with the
objective of making accurate predictions of y for unseen
values of x. Typically, our predictions on unseen data
is based upon some function f(x) defined over the input
space, and learning is the process of inferring (perhaps
the parameters of) this function.

The support vector machines [14] (SVM) makes predic-
tions based on the function of form:

f(x) =
l∑

i=1

αiyiK(x, xi) + θ0 (1)

where {αi} are the positive Lagrange multipliers, K(·, ·)
is a kernel function. A key feature of SVM is that, in
classification case, its target function attempts to mini-
mize the number of errors made on the training set while
simultaneously maximizing the ‘margin’ between the two
classes (in the feature space implicitly defined by the ker-
nel). However, despite its success, we can identify a num-
ber of significant and practical disadvantages of the sup-
port vector learning methodology: 1. Although relatively
sparse, SVMs make liberal use of basis functions. The
number of support vectors grow linearly with the size of
training set and the time for computing the target func-
tion f(x) is also proportional to the number of support
vectors. This makes SVM highly unsuitable for handheld
devices like mobile phones. So sparsity is an important is-
sue, both for computational efficiency, storage efficiency
and generalization performance. 2. It is necessary to
estimate the error/margin trade-off parameter ‘C’. This
generally requires a cross-validation procedure, results in
increasing the computational time of the model. 3. The
kernel function K(·, ·) must satisfy Mercer’s condition.

Another flexible and popular set of candidates for f(x) is
of the form:

f(x, β) =
m∑

i=1

βiΦ(x, xi) + β0 (2)

where m ≤ l, {βi} are the model weights and Φ(·, ·) is

Proceedings of the World Congress on Engineering 2010 Vol I
WCE 2010, June 30 - July 2, 2010, London, U.K.

ISBN: 978-988-17012-9-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2010

a basis function. The basis functions are more general
compared to the kernel functions as they need not satisfy
the Mercer’s condition1. Analysis of functions of type 2
is easy since the weight parameters {βi} is linear and the
objective is to find ‘good’ values for these. In this paper
we propose a novel Sparse Classification Model(SCM) of
the form 2 which avoid all the above mentioned disad-
vantages of SVM. The key feature of this model is that
the model requires relatively fewer basis functions as well
as offering good generalization performance,

Outline of the paper is as follows: Section 2 describes
related work, Section 3 and 4 presents our approach and
design of sparse classifier. Section 5 shows our experi-
mental results and improvements we achieved over SVM
classifier. Section 6 concludes the paper.

2 Related Work

There are several methods to build a sparse kernel clas-
sifier. In [3], a method is described to speed up the
classification process by approximating the solution using
a smaller number of vectors. Their method proposes to
determine n reduced set vectors z1, z2, . . . , zn, whose lin-
ear combination approximates the kernel classifier built
in advance. The “reduced set”of vectors determined by
Burges’ method are generally not support vectors and
can in some cases be computed analytically.

In [5], the reduced support vector machine (RSVM) algo-
rithm was proposed, and uses a randomly selected subset
of the data to obtain a nonlinear separating surface. But
the obtained classifier may not guarantee good classifica-
tion performance always because the support vectors are
chosen at random. In the relevance vector machine pro-
posed in [4] a prior on the expansion coefficients favors
sparse solutions.

Our approach of adopting cooperative game theory tech-
niques to the problem of relevant vector selection is pri-
marily inspired from [2]. It proposes the Contribution
selection algorithm (CSA) for feature selection. The algo-
rithm is based on the Multi-perturbation Shapley Anal-
ysis (MSA), a framework which relies on game theory to
estimate usefulness of a feature. It iteratively estimates
the usefulness of the features and selects them accord-
ingly, using either forward selection or backward elimina-
tion.

3 Our Approach

Our aim is to build a sparse classifier with good general-
ization performance. The classification surface is deter-
mined by the selected points known as relevant vectors
which come from the training samples. In this work, we

1Mercer’s condition tells us whether or not a prospective kernel
is actually a dot product in some space

introduce a Sparse Classification Model(SCM) designed
using Shapley value. The Shapley value divides the col-
lective value of the game among the players according
to their marginal contribution. That is, the higher the
Shapley value of a player, the more important the player
in the game.

The proposed SCM, is a general, greedy, sparse approx-
imation scheme with the squared error loss, which iter-
atively adds new functions (basis functions) to the lin-
ear expansion. These basis functions are centered on
the training instances and their selection in each itera-
tion (relevant vector selection) is based on the Shapley
value of the corresponding training instances. The rel-
evant vector selection refers to the problem of selecting
input vectors, otherwise called training instances, that
are relevant in predicting a target function.

We convert the concepts of cooperative game theory and
shapley value to relevant vector selection problem. Here
each training vector will now become the player and
Shapley value of a vector now represents the importance
or contribution of that training vector in classification.
Selection of training vectors is based on the contribution
values of those vectors. Unlike SVM, the non zero weights
in the SCM are not associated with examples close to the
decision boundary, but rather represent prototypical ex-
amples of classes.

The important features of the proposed SCM over SVM
are: 1. It typically requires fewer basis functions without
loss in the generalization performance when compared to
an equivalent SVM and also allow us to directly control
the sparsity of the solution. 2. Selection of relevant vec-
tors on which basis functions are centered, is based on the
Shapley value, a novel approach different from traditional
ones. 3. It removes the requirement that kernel function
should satisfy Mercer’s condition for kernel-based solu-
tions. 4. It uses the traditional squared error and also
allows other differentiable loss functions.

Next section gives brief overview of Shapley Value.

3.1 Cooperative Game and the Shapley
value

Cooperative game theory [8] is a coalitional game where
group of players is associated with the payoff and the
competition here is between coalitions. Formally, a coali-
tional game is defined by a pair (N, v) where N =
{1, . . . , n} is the set of all players and v(S), where S ⊆ N ,
is a value/payoff of the coalition S. It is important in such
a game to divide the value of the coalition to the players
in the coalition. The value naturally should correspond
to the contribution of the player in achieving a high payoff
of the coalition. The Shapley value assigns value for each
player in the coalition game based on the contribution.

The Shapley value is defined as follows. Let the marginal

Proceedings of the World Congress on Engineering 2010 Vol I
WCE 2010, June 30 - July 2, 2010, London, U.K.

ISBN: 978-988-17012-9-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2010

contribution/importance of the player i to coalition S,
with i /∈ S, be �i(S) = v(S ∪ {i}) − v(S). Then the
Shapley value defined by the payoff

φi(v) =
1
n!

∑

π∈Π

�i(Si(π)) =
1
n!

∑

π∈Π

[v(Si(π)∪i)−v(Si(π))]

(3)
where Π is the set of permutations over N and Si(π)
is the set of players appearing before the i’th player in
permutation π. The Shapley value of a player is a mean
of a marginal value over all possible subsets of players.

The calculation of the Shapley value requires sum over
all possible subsets of players, which is impractical in the
case of relevant vector selection problem. An unbiased
estimator for the Shapley value by uniformly sampling
permutations from Π is presented by Keinan et al. [1] .
The bounded estimated contribution value becomes

ϕi(v) =
1

|Πd|
∑

π∈|Πd|
�i(Si(π)) (4)

where Πd is the set of sampled permutations on subsets
of size d. The resulting estimated Shapley value is an ef-
ficient value, since the sum of the marginal importance of
all players in any permutation is v(N). For a detailed dis-
cussion of the MSA framework and its theoretical back-
ground see [1].

Relevant vector selection attempts to estimate the con-
tribution of each training vector in generating a classi-
fier. The players are mapped to the training vectors and
the payoff is represented by a real-valued function v(S),
which measures the performance of a classifier generated
using the set of training vectors S. This setting turns
classification in to a coalitional game among the training
vectors. Higher the Shapley value of a training vector
implies that it is more relevant in predicting the target
function.

3.2 Regularized Least-Squares Learning
Model and the Representer Theorem

Given a set of examples {xn}l
n=1 along with correspond-

ing targets {yn}l
n=1, which have been drawn i.i.d from

an unknown joint probability distribution P (X, Y), the
aim is to find a function f which minimizes the following
risk R[f] = E(f(X) − Y)2. We can use any loss func-
tion for estimating the risk, but here we use the tradi-
tional squared loss. Since P (X, Y) is unknown, we have
to look for the function f which minimizes the empiri-
cal risk Remp[f] =

∑l
i=1(f(xi) − yi)2. This problem is

ill-posed and a classical way to turn it into a well-posed
one is to use regularization theory [9]. In this context,
the solution of the problem is the function f ∈ H that
minimizes the regularized empirical risk :

Rreg[f] =
1
n

l∑

i=1

(f(xi) − yi)2 + λΩ(f) (5)

where H is the hypothesis space, Ω is measures the
smoothness of f and λ a regularization parameter [10].
Under general conditions on H (Reproducing Kernel
Hilbert Space), the solution of this minimization problem
is of the form: f(x, β) =

∑l
i=1 βiK(x, xi) where K is

the reproducing kernel of H and has to satisfy Mercer’s
condition [6]. The above result is proposed in [11] and
known as the representer theorem. The question of the
sparsity of the solution f can be addressed in two differ-
ent ways. The first approach is to use a regularization
term in equation 5 that imposes sparsity of β whereas
the second one is based on a stepwise method consisting
of adding functions from a dictionary. The bias-variance
problem involves several parameters, especially the
kernel parameters and the hyper-parameter trading
between goodness-of-fit and regularization.

Our proposed model is based on the second approach
i.e., the step-wise method of adding functions from a dic-
tionary. We use a greedy constructive strategy similar to
Matching Pursuit proposed by [12] for approximating the
target function.

4 The Sparse Classification Model(SCM)

Given a set of examples of input vectors {xn}l
n=1 along

with corresponding targets {yn}l
n=1, and a basis function

Φ : Rd × Rd → R, we use as our dictionary the basis
functions centered on the training points: D = {di =
Φ(., xi)|i = 1..l}. The sparse decision functions which we
are interested are expansions of the form

fN (x) =
N∑

n=1

βnΦ(x, xγn
)

where N is the number of basis functions (sparsity control
parameter) in the solution and N << l. Here γ1..N are
the indexes of vectors which are relevant in predicting the
target function. Selection of relevant vectors {xγn

}N
n=1

among the set of input vectors, for a given number N
of allowed basis functions is in general an NP-complete
problem. So the SCM proceeds in a greedy constructive,
fashion:

1. It starts at stage 0, with sparse decision function
f0 = 0

2. At each stage n, the vector xγn
is selected with the

highest contribution value (highest estimated Shap-
ley value)

3. The basis function centered on the relevant vector
is appended to the linear expansion.
Given fn−1 we build,

fn = fn−1 + βnΦ(., xγn)

Proceedings of the World Congress on Engineering 2010 Vol I
WCE 2010, June 30 - July 2, 2010, London, U.K.

ISBN: 978-988-17012-9-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2010

Algorithm 1: Sparse-Classification-Model(SCM)
Algorithm(S; t, d)
Data: Dataset {(x1, y1), . . . , (xl, yl)}, Dictionary of

functions D = {Φ(., x1), . . . ,Φ(., xl)}, Desired
number of basis function N

Result: Sparse Classifier Function f(x)
begin

Labels vector L, dictionary matrix D and
selected ← φ.
for n = 1..N do

for s ∈ S do
1. Sample permutations set {π1, . . . , πt} over

S\selected
2. Cs := Contribution(s, selected; d) = φs(v)

γn ← argmaxs∈S {Cs}
selected ← selected ∪ γn

R ← L(selected)
βn ← argminβ

{‖R − βΦ(., xγn
)‖2

}

R ← R − βnΦ(., xγn)

end

4. Selects βn ∈ R that minimize the squared norm of
the residue ‖Rn‖2 = ‖fn − L‖2

βn ← argminβ

{‖fn−1 + βΦ(., xγn
) − L‖2

}

where fn−1 =
∑n−1

i=1 βiΦ(., xγi
)

5. Finally, after N iterations the solution will be of the
form

fN (x) =
N∑

n=1

βnΦ(x, xγn
)

We have not yet specified how to choose N (i.e. when to
stop), but we shall rather use the error estimated on an
independent validation set to decide when to stop. In any
case, it can be seen as primary capacity-control parameter
of the algorithm. The pseudo-code for the corresponding
algorithm is given in Algorithm 1.

In Algorithm 1, S represents the input set of data
vectors. t, d and N are hyperparameters: t = |Πd|
is the number of permutations sampled (see equation
4), d is the maximal permutation size for calculating
the contribution values, and N is a capacity-control
parameter.

The contribution subroutine calculates the contribution
values ϕs by equation 4 where the payoff function v(S) is
simply the validation accuracy of any general classifier2

FS(x), generated based only on the training vectors from
set S. More precisely, v(S) is the accuracy of new decision

2this classifier is independent of the classifier f

Algorithm 2: Payoff function v(S)
Data: Dataset {(x1, y1), . . . , (xl, yl)}, Dictionary of

functions D = {Φ(., x1), . . . ,Φ(., xl)}, Desired
number of basis function H

Result: fH(x) =
∑H

i=1 αiΦ(x, xγi)
v(S) = |{x|fH(x)=y,(x,y)∈V }|

|V |
begin

Labels vector L, dictionary matrix D and
selected ← φ.
for n = 1..H do

γn ← maxk=1..H

∣∣∣ 〈Φ(.,xk),L〉
‖Φ(.,xk)‖

∣∣∣

αn ←
∣∣∣ 〈Φ(.,xγn),L〉
‖Φ(.,xγn)2‖

∣∣∣
L ← L − αnΦ(., xγn

)

end

surface constructed corresponding to the training vectors
which are in the set S.
Given set S, payoff v(S) is computed as follows

1. S := S ∪ selected

2. Generate a classifier FS(x) from the training set.

3. Evaluate FS(x) for all examples of the validation set.

4. Return the accuracy level, defined as
v(S) = |{x|Fs(x)=y,(x,y)∈V }|

|V |

The case S = φ is handled by returning the fraction of
majority class instances. The maximal permutation size
d and number of permutations |Πd| have an important
role in deciding the contribution values of the different
vectors, and should be selected in a way that ensures
that different combinations of data vectors that interact
together are inspected.

However, due to computational constraints we have
focused on fast classification algorithm similar to Kernel
Matching Pursuit algorithm [12]. The pseudo-code for
the payoff computation algorithm is given in Algorithm 2

In Algorithm 2, S is the input set of training vectors.
|S| is the training set size and v(S) is the payoff or
accuracy rate on validation set with KMP algorithm.

Here we would like to emphasize the fact that for both
the algorithms, dictionary of basis functions gives a lot
of additional flexibility, as it is possible to include any
function into it: 1. There is no restriction on the shape
of the kernel (no positive-definiteness constraint, could
be asymmetrical, etc). 2. Dictionary could include more
than a single fixed kernel shape. 3. For huge datasets,
a reduced subset can be used as the dictionary to speed

Proceedings of the World Congress on Engineering 2010 Vol I
WCE 2010, June 30 - July 2, 2010, London, U.K.

ISBN: 978-988-17012-9-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2010

up the training. 4. The dictionary can incorporate non-
kernel based functions.

The other important motivation for this work, is that
sparsity of SCM is directly controlled by controlling the
sparsity of the solution, i.e. the number N of allowable
basis functions, whereas the sparsity of SVMs is con-
trolled through the error/margin trade-off parameter C,
which has an indirect and hardly controllable influence
on sparsity.

5 Experimental Results

In all the experiments, we restrict ourselves to using the
following Gaussian kernel as the basis function

K(xi, xj) = e
−‖xi−xj‖2

σ2

where xi is the ith example and σ determines width of
the gaussian kernel.

5.1 2D Example : Banana Dataset

We first use two dimensional Banana dataset3 to illus-
trate graphically the selection of relevant vectors and
the decision boundary that the proposed SCM generates
based on these vectors.

Hyperparameters (the σ of the kernel function, the mar-
gin/error trade-off parameter C for soft margin SVM and
the number of relevant vectors N for the SCM algorithm)
were chosen using cross-validation technique. Figure 1
illustrates the dependency between the validation set ac-
curacy and test set accuracy for the Banana dataset as a
function of number of selected relevant vectors. As it can
be seen from Figure 1 that maximum accuracy on vali-
dation set is achieved with 35 relevant vectors. Since the
SCM usually stops when the accuracy on the validation
set stops improving, the algorithm halts once it selects
35 relevant vectors if 35 ≤ N , otherwise it halts selecting
N relevant vectors. The corresponding weight param-
eters of the kernel functions centered on these selected
relevant vectors are calculated simultaneously. The per-
formance of the classification improves on the validation
set as the algorithm selects new relevant vectors, while
the contribution values of the selected relevant vectors
decrease. The behavior for the other datasets is similar.
Decision boundaries of the target function approximated
using SVM and SCM and the corresponding error rates
are shown in Figure 2 and Figure 3.

5.2 Benchmark Datasets

To test the proposed SCM empirically we ran a number
of experiments on six real-world datasets. Table 4.1 gives
the description of datasets we have used.

3This and all other data sets we have are publicly available online
at http://ida.first.fraunhofer.de/projects/bench/benchmarks.htm.

Figure 1: Test set and validation set accuracy v/s number
of selected relevant vectors.

Figure 2: Decision boundary of Banana training set by
SVM and SCM. Relevant vectors are shown circled.

Table 1: Description of datasets and parameters used
with the SCM

Name M d t

Heart 50 30 100
Image 65 100 60
Banana 50 45 100
German 60 75 70
Diabetes 50 75 75
B.Cancer 40 45 100

For all the above data sets, training and testing size fol-
lows 4 and we used the following procedure: two out of
three equi-sized random partitions of training dataset was
used for training and remaining for validation. The SCM
is prone to over-fitting on the validation set; when the
classifier performance is evaluated on a possibly small
validation set. In order to solve this problem one can
use 10-fold cross validation; where the training set will
be split into several parts and then payoff function evalu-
ated by averaging a classifiers performance on the whole
training set.

In order to examine the effect of different parameters val-

4http://ida.first.fraunhofer.de/projects/bench/benchmarks.htm.

Proceedings of the World Congress on Engineering 2010 Vol I
WCE 2010, June 30 - July 2, 2010, London, U.K.

ISBN: 978-988-17012-9-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2010

ues on the algorithm, we ran SCM on all datasets with
different values of d (size of subsets analyzed) and val-
ues of t (number of permutations in each iteration). For
small values of d, not enough interactions between dif-
ferent training points are considered. As d increases the
performance on the dataset increased until it reaches a
critical value. For very small values of t, the performance
of the algorithm is limited. But as t grows to values a
little higher, the performance (accuracy) grows as well
until it becomes stable. Parameters N and H (number
of desired relevant points or kernel functions in the tar-
get function), which control the sparsity of the solution
is chosen using cross validation on the dataset. For each
dataset, the parameters used with sparse classification al-
gorithm are shown in Table 1. σ of kernel function and
C the margin/error trade-off parameter of SVM for each
dataset were determined by applying three-fold cross val-
idation on the training set. The best parameters were
then used in implementing the algorithm.

This procedure was repeated over 20 times over 20 dif-
ferent random splits of the dataset into train/validation.
Table 2 summarizes the average number of vectors se-
lected in each of the experiments and the corresponding
classifier’s average accuracy rate on the test set. As it
can be seen from these experiments, the error rates ob-
tained are comparable, but SCM appears to require fewer
support points (kernel functions) than SVMs. On the av-
erage, there are more than 80% reduction in number of
support vectors than SVMs which is very significant and
well suited for mobile applications.

Table 2: Comparison of error rates and av. # of vectors
selected in the different datasets.

Dataset SVM SCM #s.v. #r.v.
Heart 15.95% 17.94% 105 33
German 23.61% 24.56% 425 32
Image 6.39% 7.95% 420 38
Diabetis 24.53% 23.46% 293 16
Banana 11.58% 12.43% 145 30
B.Cancer 27.54% 24.96% 120 15

6 Conclusion

The sparse classification model presented in this paper
views the task of selecting relevant vectors in the con-
text of coalitional games. It uses a novel ranking method
that is based on the Shapley contribution values of the
training vectors. Examples in this paper have effectively
demonstrated that the proposed SCM can attain a com-
parable level of generalization accuracy as that of the
well-established SVM, while at the same time utilizing
very few kernel functions. By storing fewer kernel func-
tions we can achieve much faster recognition with less
space and achieve comparable accuracy with start-of-art
classifiers like SVM.

References

[1] A. Keinan, B. Sandbank, C. Hilgetag, I. Meilijson,
E. Ruppin. Fair attribution of functional contribu-
tion in artificial and biological networks. Journal of
Neural Computation, 16(9):1887-1915, (2004).

[2] Shay Cohen, Gideon Dror, Ruppin. Eytan. Feature
Selection Via Coalitional Game Theory. Journal of
Neural Computation, 19(7):1939-1961, (2007).

[3] C. J. C. Burges. Simplified support vector decision
rules. Proceedings of 13th International Conference
on Machine Learning, Bari, Italy, 1996, pp. 71-77.

[4] M. E. Tipping, Sparse Bayesian learning and the rel-
evance vector machine, Journal of Machine Learning
Research, 1, 211-244, 2001.

[5] Y. J. Lee and O. L. Mangasarian, RSVM: reduced
support vector machines, CD Proceedings of the
First SIAM International Conference on Data Min-
ing, Chicago, 2001, CD-ROM.

[6] V. N. Vapnik. The Nature of Statistical Learning
Theory. Springer, 1995.

[7] R.B. Myerson. Game Theory: Analysis of Conflict.
Harvard University Press, (1997).

[8] P.D. Straffin. Game Theory and Strategy. The Math-
ematical Association of America, (1993).

[9] A. N. Tikhonov and V. A. Arsenin (1977). Solutions
of Ill-posed Problems. Winston and Sons, Washing-
ton.

[10] G. Wahba (1990). Spline Models for Observational
Data. Series in Applied Mathematics, Vol. 59, SIAM.

[11] G. Kimeldorf and G. Wahba (1971). Some results
on Tchebycheffian spline functions. J. Math. Anal.
Applic., 33, 82?95.

[12] S. Mallat and Z. Zhang (1993). Matching pursuits
with time-frequency dictionaries. IEEE Transactions
on Signal Processing, 41(12), 3397?3415.

[13] M. Shubik (1985). Game theory in the social sci-
ences. Cambridge, MA: MIT Press

[14] Burges, C. J. C. A Tutorial on Support Vector Ma-
chines for Pattern Recognition. Data Mining and
Knowledge Discovery 1998, VOL 2; NUMBER 2,
pages 121-168

Proceedings of the World Congress on Engineering 2010 Vol I
WCE 2010, June 30 - July 2, 2010, London, U.K.

ISBN: 978-988-17012-9-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2010

