
Clauses Representation Comparison in Neuro-
Symbolic Integration

Saratha Sathasivam

Abstract: In the area of logical reasoning systems, conjunctive
normal form (CNF) is used widely. Hence, we are interested in
CNF form to ease the use in logical reasoning system. In this
paper we show that given any clauses in DNF, we can convert it
into respective CNF. We also prove the existence of logical
equivalent between the DNF and the respective CNF conversion.

Keywords: logical reasoning, CNF, DNF

I. INTRODUCTION

 An artificial neural network (ANN) is an information
processing paradigm that is inspired by the way the brain
processes information at the low biological level. The
collective behavior of a neural network then demonstrates the
high-level behavior like ability to learn, recall, and generalize
from training patterns or data [5]. Neural networks are
becoming very popular with data mining practitioners,
particularly in medical research, finance and marketing fields.
This is because they have proven through comparison, their
predictive power with statistical techniques using real data
sets such as clustering technique, K-means algorithm and
others. There is a lot of research in data mining based on
neuro-symbolic integration (e.g. [2-4], see also [1]).
 Wan Abdullah [9] proposed a method of doing logic
program on a Hopfield network. Optimization of logical
inconsistency is carried out by the network after the
connection strengths are defined from the logic program; the
network relaxes to neural states which are models (i.e. viable
logical interpretations) for the corresponding logic program.
Clauses can be either represented in Conjunctive Normal
Form (CNF) or Disjunctive Normal Form (DNF). However,
CNF is widely been used to represents clauses. In this paper,
we prove the equalities between the CNF and DNF
conversion in carrying out logic program in Hopfield
network.
 This paper is organized as follows. In section 2, the
outline of doing logic programming on a Hopfield network is
presented. Meanwhile, section 3 contains discussion regarding
the CNF and DNF. Next, in section 4 contains simulation
result using CNF and DNF conversion. Finally concluding
remarks regarding this work occupy the last section.

Manuscript received March 5, 2010. This research is partly financed by

FRGS grant (203/ PMATHS/671185) from the Ministry of Higher Education,
Malaysia and RU grant (1001/ PMATHS 817035) from Universiti Sains
Malaysia.

Saratha Sathasivam. Author is with the Universiti Sains Malaysia (phone:
6046532428; fax: 6046570910; e-mail: saratha@cs.usm.my).

II. LOGIC PROGRAMMING ON A HOPFIELD
NETWORK

 In order to keep this paper self-contained we briefly
review the Little-Hopfield model. The Hopfield model is
a standard model for associative memory. The Little
dynamics is asynchronous, with each neuron updating
their state deterministically. The system consists of N
formal neurons, each of which is described by an Ising
variable [5]),....2,1(),(NitSi  . Neurons then are bipolar,

{iS -1,1 }, obeying the dynamics)sgn(ii hS  , where

the field,)1()2(
ij

j
iji JVJh   , i and j running over all

neurons N,)2(
ijJ is the synaptic strength from neuron j to

neuron i, and iJ is the threshold of neuron i.

Restricting the connections to be symmetric and zero-

diagonal,)2()2(
jiij JJ  , 0)2(iiJ , allows one to write a

Lyapunov or energy function,

i
i

iji
i j

ij SJSSJE  )1()2(

2

1
 (1)

which monotone decreases with the dynamics.
The two-connection model can be generalized to

include higher order connections. This modifies the
“field” to be

)1()2()3(.... ij
j

ijkj
j k

ijki JSJSSJh   (2)

where “…..” denotes still higher orders, and an energy
function can be written as follows:

  kj
i j k

iijk SSSJE)3(

3

1
.....

 
i

ii
i j

jiij SJSSJ)1()2(

2

1
 (3)

provided that)3(
][

)3(
ijkijk JJ  for i, j, k distinct, with […]

denoting permutations in cyclic order, and 0)3(ijkJ for

any i, j, k equal, and that similar symmetry requirements
are satisfied for higher order connections. The updating
rule maintains

)](sgn[)1(thtS ii  (4)

 In the simple propositional case, logic clauses take the
form .,....,,,......,, 2121 mn BBBAAA  which says that (1A

or 2A or …. or nA) if (1B and 2B and … and nB); they

are program clauses if 1n and 0m : we can have

rules e.g. .,CBA  saying


 CBACBA)(, and
assertions e.g. .D saying that D is true.
 A logic program consists of a set of program clauses
and is activated by an initial goal statement. In
Conjunctive Normal Form (CNF), the clauses contain one
positive literal.

Proceedings of the World Congress on Engineering 2010 Vol I
WCE 2010, June 30 - July 2, 2010, London, U.K.

ISBN: 978-988-17012-9-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2010

 Basically, logic programming in Hopfield model [9] can
be treated as a problem in combinatorial optimization.
Therefore it can be carried out in a neural network to obtain
the desired solution. Our objective is to find a set of
interpretation (i.e., truth values for the atoms in the clauses
which satisfy the clauses (which yields all the clauses true). In
other words, we want to find ‘models’.
 The following algorithm shows how a logic program can
be done in a Hopfield network based on Wan Abdullah’s
method:

i) Given a logic program, translate all the clauses in the
logic program into basic Boolean algebraic form.
ii) Identify a neuron to each ground neuron.
iii) Initialize all connections strengths to zero.
iv) Derive a cost function that is associated with the

negation of all the clauses, such that
1

(1)
2 xS represents

the logical value of a neuron X, where xS is the neuron

corresponding to X. The value of xS is define in such a

way that it carries the values of 1 if X is true and -1 if X is
false. Negation (neuron X does not occur) is represented

by
1

(1)
2 xS ; a conjunction logical connective is

represented by multiplication whereas a disjunction
connective is represented by addition.
v) Obtain the values of connection strengths by

comparing the cost function with the energy, H.
vi) Let the neural networks evolve until minimum energy

is reached. Checked whether the solution obtained is a
global solution.

 The applied methodology may be summarized in the
following way: given an optimization problem, find the cost
function that describes it, design a Hopfield network whose
energy function must reach (one of) its minima at the same
point in configuration space as the cost function, so that the
stable configurations of the network correspond to solutions
of the problem. We do not provide a detail review regarding
neural network logic programming in this paper, but instead
refer the interested reader to Wan Abdullah [8].

. III. INTRODUCTION OF NORMAL FORMS

 A normal form for an expression is usually a subset of the
standard syntax of expressions, such that either every
expression can be rewritten in the normal form, or that
expressions in the normal form have certain interesting
properties. By restricting the form, we can often find simple
and/or efficient algorithms for manipulating the expressions.
There are two types of normal forms we are interested here:
Disjunctive Normal Form (DNF) and Conjunctive Normal
Form (CNF). DNF is very commonly used in circuit design
while CNF is much more commonly used in the area of
logical reasoning systems [8].
 In disjunctive normal form (or DNF), every expression is
a disjunction of conjunctions of literals. A literal is a Boolean
variable or its negation. In conjunctive normal form (or CNF),
every expression is a conjunction of disjunctions of literals. A
disjunction of literals is called a clause. In Boolean logic,

CNF is a method of standardizing and normalizing logical
formulas. The main advantage of it is its uniformly
formed form, which makes it suitable to automatic
processing which needs to define the rule for the machine
to recognize the logic.
 Note that all logical formulae can be converted into
conjunctive normal form through repeated application of
the distributive law of disjunction over conjunction, thus
when making proves on formulae or on the structure of
formulae, it is often convenient to assume that everything
is in CNF.
(i) Disjunctive Normal Form (DNF)
 A formula F is a Disjunctive Normal Form (DNF) if
and only if F is of the form: 1 2 , 1nF F F F n     ,

where each iF is a conjunction of literal(s).

 1 2, , , , 1nF F F n  is its disjuncts.

(ii)Conjunctive Normal Form (CNF)
 A formula F is a Conjunctive Normal Form (CNF) if
and only if F is of the form:

1 2 , 1nF F F F n     ,

where each iF is a disjunction of literal(s).

1 2, , , , 1nF F F n  is its conjuncts.

 Boolean expression is a statement that is either true or
false. It is used to represent both DNF and CNF. Boolean
data type has two values, T and F or ‘1’ and ‘0’. Truth
table [6] is a table showing all possible truth or false
values for an expression representing a function as it lists
all the possible combinations of inputs and outputs of the
normal forms taken in consideration. It describes the
relationship between the input and output of a Boolean
function. Since each variable can take only two values, a
statement with "n" variables requires a table with

n2 rows.

A. Truth table anaysis

 After a long introduction of basic of normal forms
and the conversion rules between DNF and CNF, now we
are going to proof that DNF is not as good as CNF.

Table 1: CNF and DNF conversion

 From Table 1, we see that the number of unsatisfied
events for DNF conversion is higher than the CNF
presentation for the same logical clauses evaluation. So,

the number of models for CNF is higher and reliable than
the DNF conversion.

A B C A C

A B

C

 


(

)

A B

C

  


1 1 1 -1 - -1 1
1 1 -1 -1 - -1 1
1 -1 1 - - -1 1
1 -1 -1 - - -1 1
-1 1 1 1 -1 -1 1
-1 1 -1 1 1 1 -1
-1 -1 1 - - -1 1
-1 -1 -1 - - -1 1

Proceedings of the World Congress on Engineering 2010 Vol I
WCE 2010, June 30 - July 2, 2010, London, U.K.

ISBN: 978-988-17012-9-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2010

Table 2: True table for DCBA 

A B C D B D A B

C D


 

1 1 1 1 -1 -1 1
1 1 1 -1 -1 1 1
1 1 -1 1 -1 -1 1
1 1 -1 -1 -1 1 1
1 -1 1 1 1 -1 1
1 -1 1 -1 1 1 1
1 -1 -1 1 1 -1 1
1 -1 -1 -1 1 1 1
-1 1 1 1 -1 -1 1
-1 1 1 -1 -1 1 1
-1 1 -1 1 -1 -1 -1
-1 1 -1 -1 -1 1 1
-1 -1 1 1 1 -1 1
-1 -1 1 -1 1 1 1
-1 -1 -1 1 1 -1 1

-1 -1 -1 -1 1 1 1

Table 3: True table for)(DCBA 

A B C D A C DCBA )(DCBA 

1 1 1 1 -1 - -1 1
1 1 1 -1 - - -1 1
1 1 -1 1 - - -1 1
1 1 -1 -1 - - -1 1
1 -1 1 1 - - -1 1
1 -1 1 -1 - - -1 1
1 -1 -1 1 - - -1 1
1 -1 -1 -1 - - -1 1
-1 1 1 1 1 -1 -1 1
-1 1 1 -1 - - -1 1
-1 1 -1 1 1 1 1 -1
-1 1 -1 -1 - - -1 1
-1 -1 1 1 - - -1 1
-1 -1 1 -1 - - -1 1
-1 -1 -1 1 - - -1 1
-1 -1 -1 -1 - - -1 1

 From table 2 and 3 we compared number of
unsatisfied events for CNF and DNF conversion. When
the number of literals per clause increased, we observed
that the number of unsatisfied events also increased.
However CNF still can be consider stable. So, this
indicates that CNF presentation is better than DNF for
finding models for the corresponding logic program.
 So, in our next work, we convert the DNF
representation to CNF form before doing logic
programming in Hopfield network. In next section, we
look at the simulation result.

IV. SIMULATION RESULT

 We focused on calculating the global minimum ratio
(zM) and global Hamming distance (HDGlobal) of first,
second and third order of a Boolean expression. First,
user entered the amount of first, second and third order
clauses that required. As we know, first order clause

consists of one literal (neuron), second order clause
consists of two literals and third consists of three neurons.
For the clauses in DNF form, we convert it into CNF
form before entering the task of doing logic programming
in Hopfield network. Then, the converted clauses are put
into the energy relaxation loop. Final states of the relaxed
neurons resemble the corresponding model for the logic
program.
 The results we expect from running the program are
global minimum ratio which is approximately 1 and
Hamming distance which is approximately 0. The
maximum number of neurons defined here is up to 40. It
can be altered according to user’s need by changing the
initially defined NN value in the source code.

Proceedings of the World Congress on Engineering 2010 Vol I
WCE 2010, June 30 - July 2, 2010, London, U.K.

ISBN: 978-988-17012-9-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2010

Table 4: Table of zM and HDGlobal with NN from 10 until 50

Number of neurons
(NN)

Number of literals per
clause (Nc1)

Number of literals per
clause (Nc2)

Number of literals per
clause (Nc3)

Global Minimum
Ratio (zM)

Global hamming
distance (HDGlobal)

10 5 5 5 0.99760002 0.00049830
15 8 8 8 0.99750000 0.00074675
20 10 10 10 0.99750000 0.00100466
25 13 13 13 0.99699988 0.00124954
30 15 15 15 0.99820000 0.00150402
35 17 17 17 0.99970001 0.00175012
40 20 20 20 0.99949998 0.00200351
45 22 22 22 0.99469100 0.00224691
50 25 25 25 0.99978003 0.00250521

 From Table 4, we increased NN from 10 until 50 with
interval 5. Then, Nc1, Nc2 and Nc3 are nearly to NN
divided by 2. We noticed that when NN increased, zM is
fluctuating; however, HDGlobal is slightly increased.
When number of neuron and number of clauses
increased, the time consumed is also increased when
using Microsoft Visual C++ 6.0 and Dev-C++. The
maximum number of neuron that we can run is only up to
50. This shows that time complexity getting larger and
larger significantly. But when running using Linux, the
maximum number of neuron that can be achieved is up to
90.

V. CONCLUSION

We have proved that DNF is not a good representation
for logic program due to it’s highly time consuming
evaluation process. By converting it into CNF, we found
that the evaluation process can be greatly reduced as the
time needed for evaluation is reduced. The advantage of
the CNF shown here is that the time to process CNF is
much less than to process DNF in programming logic. In
the logic programming, we added on a user-input
function into the program, which will then base on the
input to calculate the global minimum ratio and hamming
distance. The result from the calculation will give us a
global minimum ratio of approximately 1 and hamming
distance which approximates to 0.

ACKNOWLEDGEMENT

 Saratha Sathasivam thanks Universiti Sains Malaysia
and Ministry of Higher Education.

REFERENCES

[1] A.S. Avila Garcez,, K. Broda, & D.M. Gabbay. Neural-Symbolic

Learning Systems: Foundations and Applications. In Perspectives
in Neural Computing, Springer, 2002.

[2] C.J. Mantas, J.M. Puche & J.M. Mantas . Extraction of similarity
based fuzzy rules from artificial neural networks. International
Journal of Approximate Reasoning, 43, 2008, pp 202-221.

[3] Kasabov, Nikola. Adaptation and interaction in dynamical systems;
Modelling and rule discovery through evolving connectionist
systems. Applied Soft Computing, 6, 2006, pp 307-322.

[4] Kolman Ehyal and Margaliot Michael.. Extracting symbolic
knowledge from recurrent neural networks- A fuzzy logic
approach. In press, 2008

[5] S. Haykin. Neural Network: A Comprehensive Foundation.
Macmillan, New York, 1998.

[6] S. Sathasivam, Logic Mining in Neural Network. PhD Thesis, 2007,
Malaysia.

[7] W.A.T.Wan Abdullah & S. Sathasivam,. Logic Mining Using
Neural Networks. In Proceedings of the International Conference
in Intelligent System 2005 (ICIS 2005), 2005, Kuala Lumpur,
Malaysia.

[8] W.A.T. Wan Abdullah. Logic Programming on a Neural Network.
Int .J. Intelligent Sys, 7, 1992, pp 513-519.

[9] W.A.T. Wan Abdullah. Neural Network logic. In O. Benhar et al.
(Eds.), Neural Networks: From Biology to High Energy Physics.
Pisa: ETS Editrice., 1991, pp. 135-142.

Proceedings of the World Congress on Engineering 2010 Vol I
WCE 2010, June 30 - July 2, 2010, London, U.K.

ISBN: 978-988-17012-9-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2010

