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Abstract—

When mining companies extract from a mine they are

faced with many decisions. Prior to extraction the

mine is divided up into ‘blocks’, and the order of ex-

traction of these blocks is decided. However, because

commodity prices are uncertain, once each block is

extracted from the mine the company must decide

in real-time whether the ore grade is high enough to

warrant processing the block further in readiness for

sale, or to waste the block. The optimal cut-off ore

grade, below which a block should be wasted, is not

simply a function of the current commodity price and

the ore grade of the block itself, but as we show, is a

function also of the ore-grades of subsequent blocks,

the costs of processing, and the bounds on the rates

of processing and extraction. By using a price uncer-

tainty contingent claims approach, this paper shows

how to derive an efficient mathematical algorithm to

calculate and operate an optimal cut-off grade crite-

rion throughout the extraction process. The model

is applied to a real mine composed of some 60,000

blocks, and shows that an extra 10% of value can be

created by implementing such an optimal regime.

Keywords: Real-Options, Stochastic Control, Reserve

Valuations.

1 Introduction

The planning and scheduling of extraction from a mine
is a complicated process which is made in the presence of
uncertainties such as the future commodity price and es-
timated ore-grade. Prior to extraction, the mine is graph-
ically divided up into blocks, each containing its own esti-
mated quantity of ore. From these blocks one can deter-
mine the optimal extraction pathway through the mine
using software such as the Gemcom-Whittle package [13],
which allows companies to construct feasible pit shapes
that obey slope constraints on the angle of the pit, trans-
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portation needs and work-force limitations. Whilst this
algorithm may be used several times throughout a mine’s
life, so as to make sure the mine plan is consistent with
market conditions, on a day-to-day basis the mine must
take more detailed scheduling decisions in real-time. The
key real-time decision to take is whether or not to process
the latest extracted block (e.g. by milling or electrolysis).
The block’s intrinsic value varies with its ore grade and
with the underlying commodity price. However the mine
owners must also strive to fill the operating capacity of
the processing unit, since the cost of processing can be
many times the cost of extraction. We define a ‘cost-
effective’ block as one whose ore grade is high enough
to pay the cash costs of processing, at the current price.
However the cut-off ore grade, above which a block should
be processed, need not be set as low as the grade above
which the block will be cost-effective to process. Dis-
parity between the rate of extraction and the maximum
processing capacity mean that there can be an opportu-
nity cost to processing all cost-effective material, since
the small short-term gain of processing a low grade block
could be surpassed by bringing forward the processing
of more valuable blocks instead. The optimal wasting
of potentially cost-effective material is the focus of this
paper.

To highlight the above point, let us consider a trivial case
where the mine has a stock of 3 blocks awaiting process-
ing, extracted in order, A, B and C, whose current mar-
ket values after processing costs are VA = $1, VB = $50,

and VC = $1000. Whilst, classically, analysis has often
been indifferent to the order of processing, with enough
discounting applied one can see that by an optimal cut-
off criterion, it would be best to simply waste A and
get on with processing B and C. This is because the
value gained in processing A is less than the time value
of money lost in waiting to process B and C at a later
date. This lack of consideration of the discount rate has
been highlighted before as a drawback in current mine
planning [12] but, as yet, little progress has been made
with it. Another consequence of an optimal cut-off grade
decision is that it can become efficient to increase the rate
of extraction of poor quality ores to keep the processing
plant loaded. This paper also shows how to determine
the corresponding optimal local variation in the extrac-
tion rate, enabling mining engineers to respond promptly
to joint variations in ore quality and underlying price.
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Other approaches to mine valuation have relied upon
simulation methods to capture the uncertainty of price
and ore-grade [8], [10], [7]. These methods can be ex-
tremely time consuming, with running times of several
hours [3], and can often lead to sub-optimal and incom-
plete results. Using these simulation techniques, optimal
cut-off grades were investigated, [9], although little in-
sight into the core dynamics, performance or robustness
was supplied. To make a step-change away from these
methods, partial differential equations (PDEs) can be im-
plemented to capture the full mine optimisation process.
Using PDEs, optimal extraction rates were investigated
by [6], which built on work by [2] and [4]. The inclusion
of stochastic ore-grade uncertainty was then tested [5].
This enabled mine valuations to be produced in under
10 seconds and showed that the effect on mine value of
stochastic ore-grade variation is much less than the effect
of stochastic price. Whilst the mathematics and numer-
ics of this PDE approach are relatively complex at the
outset, once solved they produce highly accurate results
in short times - complete with model input sensitivities.
This paper extends the use of PDEs, adding a model for
tactical processing decisions under foreseeable variations
in ore grade and unforeseeable fluctuations in price. This
shows that when processing capacity is constrained, the
ability to maximise the value of processing by varying the
cut-off ore grade can add significantly to mine value when
optimally applied. By solving rapidly under a range of
processing constraints, the scale of the processing plant
can itself be optimised.

In Section 2 we derive the model using a price uncertainty
contingent claims approach, and show how the optimal
cut-off decision rule works in Section 3. We then apply
the model to a mine composed of some 60,000 blocks in
Section 4, to show how much extra value the running of
an optimal cut-off grade regime can add to a valuation.
We draw together our concluding remarks in Section 5.

2 Model Construction

To create the framework for a mine valuation, V , under
an optimal cut-off grade, we first prescribe three state-
space variables. These are the price S per unit of the
underlying resource in the ore, the remaining amount of
ore within the mine Q and time t.

Before specifying how to determine V , we first define the
underlying price uncertainty process. Within this paper
we assume the underlying price S to follow a geometric
Brownian motion,

dS = µSdt + σsSdXs, (1)

where µ is the drift and σs the volatility of S. The ran-
dom variable dXs, is normally distributed as N(0,

√
dt).

We use this price process without loss of generality, since
other price processes (such as mean-reverting Brownian

motion) can easily be implemented by the techniques de-
scribed here.

Using this notation, we may apply Ito’s lemma [14] to
write an incremental diffusive change in V as,

dV =σs

∂V

∂S
dXs +

∂V

∂Q
dQ

+

(

∂V

∂t
+

1

2
σs

2
∂2V

∂S2
+ µ

∂V

∂S

)

dt, (2)

where we have taken powers of (dt)2 and (dQ)2 to be
negligible. We are able to remove the dQ term via the
relationship between Q and t by specifying the rate of
extraction, qe, namely,

dQ = −qedt. (3)

This extraction rate is the function we wish to solve for in
our optimal cut-off regime, as it determines both how we
progress through the mine and, as a consequence, which
blocks we choose to waste. The rate of extraction will ob-
viously have limitations on its size, qe ∈ [0, qmax], which
itself could be a function of time. The rate of extraction
is closely linked to the rate of processing, which should
be kept as close as possible to its physical maximum qp.
Hence qe must be high enough for the processing unit to
operate at its capacity, qmax, i.e. there must always be
enough cost-effective ore-bearing material available to be
processed. Optimal variation in the extraction rate has
already been shown to produce improved valuations, [6],
although this was achieved without considering process-
ing limitations or grade variation.

With this relationship, (3), equation (2) can be trans-
formed into,

dV =σ1

∂V

∂S
dXs

+

(

∂V

∂t
− qe

∂V

∂Q
+

1

2
σs

2
∂2V

∂S2
+ µ

∂V

∂S

)

dt. (4)

To follow the conventional approach in creating and valu-
ing risk-free portfolios we construct a portfolio, Π, in
which we are instantaneously long in (owning) the mine
and short in (owing) γs amounts of commodity futures
contracts. This defines Π = V − γsS, such that,

dΠ = dV − γsdS. (5)

This portfolio is designed to contain enough freedom in
γs to be able to continually hedge away the uncertainty of
dXs, which is the standard approach in creating risk-free
portfolios [1], [11], [14]. It also means that within a small
time increment, dt, the value of Π will increase by the
risk-free rate of interest, minus any economic value gen-
erated and paid out by the mine during the increment.
This economic value is typically composed of two parts,
the first, negative, being the cost to extract, qeεM , and
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the second, positive, the cash generated by selling the re-
source content of the ore processed, qp(SG−εP ). Here εM

is the cost of extraction per ore tonne, εP is the process-
ing cost per ore tonne, and G is the ore-grade (weight of
commodity per ore tonne). The reason why the economic
functions contain the factors qe or qp is that we wish to
maximise value by varying qe in real time, so as to main-
tain qp at its upper bound. To have turned the block
model into one in which we use the continuous function,
G, we have assumed that blocks are small enough that
they can be approximated as infinitesimal increments of
volume.

As discussed in Section 3, the decision whether to pro-
cess or waste the next block must be optimised. Before
or after optimisation the incremental change in portfolio
value may be written as

dΠ = rΠdt − γSδSdt − qp(GS − εP )dt − qeεMdt. (6)

By setting the appropriate value of γs to be

γs =
∂V

∂S
,

and substituting equations (1), (4) and (5) into (6), we
may write our mine valuation equation as,

1

2
σs

2S2
∂2V

∂S2
+

∂V

∂t
− qe

∂V

∂Q
+ (r − δ)S

∂V

∂S

− rV + qp(GS − εP ) − qeεM = 0. (7)

This is of the same form as that derived by Brennan and
Schwartz (eq. 15, [2]), except that they added taxation
terms, but did not model processing constraints or vari-
ations of ore grade.

We next need to prescribe boundary conditions for (7).
The boundary condition that no more profit is possible
occurs either when the reserve is exhausted Q = 0, or
when a lease to operate the mine has reached its expiry
date t = T , hence:

V = 0 on Q = 0, or t = T. (8)

Since the extraction rate will have a physical upper
bound, the extraction rate and cost will not vary with
S when S is large. This permits a far field condition of
the form,

∂V

∂S
→ A(Q, t) as S → ∞. (9)

When the underlying resource price is zero we need only
solve the reduced form of equation (7) with S = 0, which
reduces to

V = e−rt

∫ T

0

qeεM (z)erzdz. (10)

This therefore completes the determination of our core
equation, and its boundary conditions. We can now de-
fine the optimising problem which we wish to solve: we

must determine the optimal extraction rate, q∗e , at ev-
ery point in the state space which maximises the value
V , where V satisfies equation (7), with qe = q∗e , subject
to the defined boundary conditions. Problems of this
type may be solved numerically using standard finite-
difference techniques [4]. All results in this paper have
been thoroughly tested for numerical convergence and
stability.

We must now show how the optimal q∗ and its corre-
sponding cut-off grade is to be incorporated into the max-
imisation procedure.

3 Cut-Off Grade Optimisation

The selection of the cut-off grade criteria boils down to
whether a cost-effective block should be processed or not.
This is because there is the possibility a more valuable
block could be brought forward in time to be processed,
which otherwise would loose more time-value of money
than the value gained from processing the first block. To
highlight this point let us consider the order of extracted
of blocks from a mine, which we (hypothetically) place
in a chronologically ordered row. As we operate the pro-
cessing unit of the mine, we must pass along this row and
decide which blocks to process and which blocks to waste.
In reality, although we know the (estimated) ore-grades
of the blocks in advance, until we know for certain the
market price at the time of processing we cannot know
what cashflow it will generate. Yet even if we assume a
constant price, we can still show how this cut-off grade
decision can be achieved, and what drives its determina-
tion.

Consider a highly simplified mine, as shown in Figure
1, which is composed of only two blocks. We allow the
mine to have the capacity within the rate of extraction to
immediately process either the first block, Block1, or its
successor, Block2. As such, the comparison is between
the value of processing both blocks in order, or the value
of only processing Block2. With a constant price we can
write down the net present value of these two (already
extracted) blocks, where we shall process both,

V1 = (SG1 − εP ) + (SG2 − εP )e−rδt. (11)

Here δt is the time it takes to process one block, and
G1 and G2 are amounts of ore within each Block1 and
Block2, respectively. This value must be compared to
the decision to waste the first block and process only the
second block, which would have value,

V2 = (SG2 − εP ). (12)

This comparison between V1 and V2 is one the algo-
rithm must continually take throughout solution space.
To demonstrate how the selection depends upon the un-
derlying price, Figure 1 shows the choices available for
two different commodity prices, one high (S = $10, 000
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Block1 Block2

$9,900

$999,900Waste

10kg

Direction of Extraction

Potential Block Values

Potential Block Values

NPV = $10,000,030

NPV = $9,999,900$9,999,900

$9,900,040$99,990

Waste

NPV = $ 999,900

NPV = $999,850

S=$10,000 per kg

Example A)

Example B)

$989,950

1000kg

S=$1,000 per kg

Figure 1: Two examples of how price may effect the order
in which blocks are processed so as to maximise a mines
NPV. Example A is made with a low commodity price,
S = $1, 000 kg−1, and Example B is made with a high
commodity price, S = $10, 000 kg−1.

kg−1) and one low (S = $1, 000 kg−1). These are made
with prescribed parameter values,

r = 10%, εP = $100 block−1, δt = 0.1 year. (13)

As can be seen, in the low-price case, Example A), it is
best to process only the second block. But in the high
commodity price case, Example B), it is best to process
both blocks. This simple example demonstrates (albeit
with rather exaggerated parameter values) how the se-
lection need be actively taken, and how different values
of the underlying price, and discount rate, will effect the
optimal cut-off decision to take. Another consequence of
this optimal decision taking, is that the mine will be ex-
hausted earlier than might have been previously thought,
since we wasted the first block and only processed the
second, hence a mine owner could agree a shorter lease
(expiry date T ) on the mine.

4 Example Valuation

4.1 Mine Data

We now apply our optimal cut-off grade model to a real
mine of some 60,000 blocks, whose block by block ore-
grade and sequence of extraction were supplied by Gem-

com Software International. This mine has an initial cap-
ital expenditure of some $250m. They also supplied a
fixed reference price Sref , for us to compare valuations
with. We ourselves assumed a maximum extraction rate
of five times the processing rate. This seems broadly re-
alistic, and it restricts the mine to wasting no more than
80% of any section of cost-effective ore. The other pa-
rameter values are,

r = 10% year−1, δ = 10% year−1,

σs = 30% year−
1

2 Sref = $11, 800kg−1,

εP = $4 tonne−1, εe = $1 tonne−1,

Qmax = 305, 000, 000 tonnes,

qp = 20, 000, 000 tonnes year−1. (14)

Whilst the ore-grade is quite volatile, it was shown in
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Figure 2: Given a block ordering in the mine, the average
standardised grade value is the cash value of ore (against
reference price) minus processing costs per tonne of ore.

[5] that a suitable average of the estimated grade quality
could be used without any sizeable alteration to the val-
uation. Using this average, Figure 1 shows the economic
worth throughout extraction for each part of the mine,
where we have assumed the price to remain at its pre-
scribed reference price, SrefG − εP . This highlights how
the grade varies through the extraction process, and it is
with reference to this grade variation that we shall com-
pare the regions where it is optimal to speed up extraction
and consequently waste certain parts of the ore-body.

4.2 Results

For the example mine, we first calculate and compare two
different valuations made with, and without, the optimal
cut-off criterion. Figure 3 shows two sets of valuations:
the lower pair of lines shows the valuations made assum-
ing a constant price (σs = 0%), and the upper pair of
lines shows the effect of including both price uncertainty
(σs = 30%) and the option to abandon the mine when
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the valuation becomes negative (which is a standard op-
tion to include in a reserve valuation [2]). In each pair
of lines the lower, dotted lines show valuation without
a cut-off regime, and the higher, solid lines show valua-
tion with the optimal cut-off regime. The optimal cut-off
regime increases the mine valuation by up to 10%, with
increasing benefit at higher prices. This may seem sur-
prising, but although the mine is always more profitable
at higher prices, the opportunity cost of not allocating
the finite processing capacity to the best available block
does itself grow.
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Figure 3: NPV of the mine against percentage of refer-
ence price for two different sets of valuations. The two
lower lines are for a constant price while the two upper
lines include price volatility and the abandonment op-
tion. NPV for the optimal cut-off regime is shown by
solid lines, and no cut-off by dashed lines.

An obvious question which arises from this analysis is,
how do we decide which ore-grades we should waste, and
when? Since we know what the current underlying price
is, we can look at the corresponding slice through the 3-
D surface of the optimal cut-off grade and see for which
regions we would waste the ore. With this we can refer
back to the corresponding grade of Figure 2 and easily
calculate what these grades actually are. For example, by
looking at the closed regions of Figure 4 we can see the
optimal cut-off grades for two different commodity prices,
S = 100% and S = 200% of the reference price. In these
two particular cases, they both appear to correspond to
a standardised cut-off grade (Figure 2) of 2 units. In
addition, one can also see the points in the state space at
which the optimal trajectory (thick solid line in Figure 4)
speeds up extraction, thereby wasting ore. The trajectory
is calculated by integrating the ODE in (3) for a given
extraction regime. The difference between the dotted line
(trajectory for the no cut-off situation), and the thick
straight line of the optimal cut-off regime therefore give
an indication of the total amount of ore wasted.
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Figure 4: Graphs showing the optimal cut-off regions
for an extraction project for two different price levels,
medium (top), and high, (bottom). The closed regions
contained within the thin solid lines show where ore is
wasted and the extraction rate is increased. The dashed
line represents the one realisation of a trajectory followed
with no cut-off, while the thick solid line represents the
realisation of the trajectory followed with optimal cut-off.

Finally, Figure 5 shows how the NPV depends upon the
expected expiry time for extraction if one operates an
optimal cut-off regime (solid line) or not (dotted line). If
the mine chooses the optimal regime, the maximum NPV
occurs just after 14 years, as opposed to the life of the
mine being maximal at mine exhaustion at 15 years (as
it is with no cut-off). This reflects the fact the under
an optimal regime the mine will occasionally increase its
extraction rate, thereby reaching the final pit shape in a
shorter time.

5 Conclusions

This paper has shown how to derive the PDE framework
for a mine to operate an optimal cut-off grade regime.
We have valued the ‘option’ to process or not to process,
and given the optimal decision rule for implementing it.
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Figure 5: The NPV of the mine against time remaining
on the option on the mine given that 100% of the mine
is present. The solid line is with optimal cut-off, dashed
without.

The model relies upon a contingent claims framework for
price uncertainty, which allows the mine to react to all
future market conditions. In our model the option adds
around 10% to the expected NPV of an actual mine of
60,000 blocks. One natural extension will be to add -
and to optimise - a dynamic stockpile. This will allow
any block which it is not optimal to process immediately
to be retained for potential processing at an optimal later
stage, thus increasing the mine valuation further.

References

[1] Black, F., The Pricing of Commodity Contracts,
Journal of Financial Economics, 3, pp. 167–179,
1976.

[2] Brennan, M.J., and Schwartz, E.S., Evaluating Nat-

ural Resource Investments, The Journal of Business,
58, 2, pp. 135–157, 1985.

[3] Caccetta, L., and Hill, S.P., An Application of

Branch and Cut to Open Pit Mine Scheduling, Jour-
nal of Global Optimisation, 27, pp. 349–365, 2003.

[4] Chen, Z., and Forsyth, P.A., A semi-Lagrangian Ap-

proach for Natural Gas Storage Valuation and Op-

timal Operation, Siam J. Sci. Comput., 30, 1, pp.
339–368, 2007.

[5] Evatt, G.W., Johnson, P.V., Duck, P.W., and How-
ell, S.D., Mine Valuations in the Presence of a

Stochastic Ore-Grade, accepted for publication by
IAENG, 2010.

[6] Evatt, G.W., Johnson, P.V., Duck, P.W., and How-
ell, S.D., Finite Resource Valuations: Insights into

Optimal Extraction Rate Regimes, In Review, 2010.

[7] Jewbali, A., and Dimitrakopoulos, R., Stochastic

Mine Planning - Example and Value from Integrat-

ing Long- and Short-Term Mine Planning Through

Simulated Grade Control, Orebody Modelling and
Strategic Mine Planning, The Australasian Institute
of Mining and Metallurgy, Melbourne, second edi-
tion, pp. 327–333, 2009.

[8] Martinez, L.A., Designing, Planning and Evaluating

a Gold Mine Project Under In-Situ Metal Grade and

Metal Price Uncertainties, Orebody Modelling and
Strategic Mine Planning, The Australasian Institute
of Mining and Metallurgy, Melbourne, second edi-
tion, pp. 225–234, 2009.

[9] Menabde, M., Foyland, G., Stone, P., and Yeates,
G.A., Mining Schedule Optimisation for Condition-

ally simulated Orebodies, Proceedings of the In-
ternational Symposium on Orebody Modelling and
Strategic Mine Planning: Uncertainty and Risk
Management, pp. 347–52, 2004.

[10] Ramazan, S., and Dimitrakopoulos, R., Stochastic

Optimisation of Long-Term Production Scheduling

for Open Pit Mines with a New Integer Programming

Formulation, Orebody Modelling and Strategic Mine
Planning, The Australasian Institute of Mining and
Metallurgy, Melbourne, second edition, pp. 385–391,
2007.

[11] Schwartz, E.S., The Stochastic Behavior of Com-

modity Prices: Implications for Valuation and Hedg-

ing, The Journal of Finance, LII, 3, pp. 923–973,
1997.

[12] Tolwinski, B., and Underwood, R., A Scheduling Al-

gorithm for Open Pit Mines, IMA Journal of Mathe-
matics Applied in Business and Industry, 7, pp. 247–
270, 1996.

[13] Whittle, D., and Cahill, J., Who Plans Mines?,
Strategic Mine Planning Conference, Perth W.A.,
pp. 15–18, 2001.

[14] Wilmott, P., Howison, S., and Dewynne, J., The

Mathematics of Financial Derivatives, Cambridge
University Press, 1995.

Proceedings of the World Congress on Engineering 2010 Vol I 
WCE 2010, June 30 - July 2, 2010, London, U.K.

ISBN: 978-988-17012-9-9 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2010




