
 
 

 

 
Abstract—A multi-level dynamic multi-objective evolution 

algorithm (MDEA) is presented in this paper for multi-objective 
optimization problems(MOPs). This algorithm divides the 
whole evolution into four search stages dynamically according to 
the amount of nondominated individuals in the population, and 
different strategies are applied in different stages . The proposed 
algorithm is validated by some benchmark test problems. 
Compared with four other state-of-the-art multi-objective 
algorithms, MDEA achieves competitive results in terms of three 
quality indicators. 

 
Index Terms—evolutionary algorithm, multi-objective 

optimization, hybrid progressive, nondominated solutions, quick 
select algorithm.  
 

I. INTRODUCTION 

 Multi-objective problems(MOPs) often involve more than 
one objectives, and these objectives are often conflicting, 
being incomparable and non-commensurable with each other. 
Multi-objective optimization is applied to offer a set of 
trade-off solutions namely the Pareto optimal solutions set 
for the MOPs. Evolutionary algorithms(EAs) are a 
nature-spired search strategy based on the evolutionary 
theory which is inspired by Darwinian(i.e., the natural 
selection of evolution ),  and are well suited for tackling 
MOPs because of their exploration and exploitation abilities 
to find multiple trade-off solutions in the search space. 

The current MOEAs researches focus on the following 
aspects[1]-[3], such as improving the methods of assigning 
the fitness value, the strategy of maintaining diversity, as well 
as promoting the ability of local search, employing dynamic 
or fixed external population. Among these existing 
algorithms, NSGAII[4] (the improved version of 
nondominated sorting genetic algorithm), SPEA2[5] 
(improved version of strength Pareto EA), PESA-II[6]，(new 
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version of Pareto-archived evolution strategy), FPGA[7](a 
fast Pareto genetic algorithm), MOCell[8](a cellular genetic 
algorithm for multi-objective optimization) are the popular 
MOEAs. As we all know, the Human beings have different  
interests in different stages, during the evolution, in different 
stages，the focus should be different. However, most of these 
algorithms employed a fixed pattern and selection metric on 
the whole evolution, few of them adopted different patterns 
in different stages adaptively and dynamically. On the other 
hand, in the evolutionary process, more solutions tended to 
lie at the current trade-off front, for most of these solutions, 
there is no distinct selection advantage[9], without an 
adequate selection method, it is difficult to find better 
solutions in the search space. Therefore, an adaptive and 
dynamic pattern which we called MDEA is proposed to 
handle the complicated problems.The advantages of different 
algorithms，such as the well-known nondominated sorted 
mechanism, the external archive population, the crowding 
distance metric and the feedback metric are combined into 
MEDA. 

The remainder of this paper is organized as follows: In 
section 2, some famous MOEAs are studied, and MDEA, our 
proposal for solving MOPs, are described; in section 3, 
several test problems are used to evaluate MDEA’s 
effectively by comparing with NSGAII,SPEA2, PESA-II and 
MOCell; Finally the main conclusion and suggestion of the 
further research is presented. 

 

II. THE ALGORITHM 

In order to find the characteristics of the different 
algorithms in different evolutionary stages  and combine their 
advantages into a new model, four state-of-the-art 
multi-objective optimization algorithms are studied before 
the MDEA is presented.  

A. Study of Convergence Behavior 

In order to find what should be focused on in different 
evolutionary stages, NSGAII , SPEA2, PESA-II and MOCell 
are studied to analyze the convergence behavior in different 
stages during the evolutionary process. Four typical 
convergence behaviors is obtained by MOCell, NSGAII, 
SPEA2 and PESA-II on test function ZDT1 are shown in Fig 
1, and five different generations during the  evolutionary 
stages are shown in the figures. Thirty independent runs are 
performed. The population size is 100, the crossover 
probability of pc=0.8, the mutation probability pm=0.01 and 
the real-code mechanism is choosed. As shown in Fig 1, as 
the numbers of generation increase, the nondominated 
solutions continue to move towards the Pareto optimal front, 
and the solutions set is more closer to the pareto front. At the 
same time, there are slight differences in figures, while the 
number of generation is less than 20, the MOCell is easy to 
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converge to a smaller value than other three algorithms, while 
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Fig. 1. the Convergence trend in the evolution progress 

the number gets up to 50, the NSGAII gets a more ideal value. 
As see from the above comparison, for the convergence 

speed of the algorithm, there are differences in different 
stages, in the early stages, the MOCell’s convergence speed 
is faster than the others’,while in the later stages, the 
performance of NSGAII is the best among these four 
algorithms. In addition, we must point out that in the early 
stages of the evolution, the convergence speed of all the four 
algorithms are very fast and the amount of nondominated 
solutions increases sharply.  

B. The Quantity of Nondominated Solutions in the Evolution 

As we all know, these four MOEAs all have an external 
population to store the nondominated solutions found during 
the evolution.  In Fig 2, the average ratio of nondominated 
solutions in external archive population found by MOCell, 
NSGII, SPEA2, PESA-II on ZDT1 in the evolutionary 
process are presented. Obviously, as the amount of 
nondominated solutions in the external population increases 
sharply when the number of generation is less than 80, in this 
stage, the emphasis of the algorithm is to search and select the 
nondominated solutions from the population, different 
strategies are applied in different algorithms and that is the 
key of the algorithm, how to improve the efficiency of search 
and selection is more important because the search and 
selection occupied much of the running time. When the 
number of generation is larger than 80, the amount of  
nondominated solutions in the archive population is equal to 
the population size, so the determination of whether or not  
the new nondominated solutions found by the algorithm are 
better than the existed nondominated solutions becomes  the 
primary issue. 

 
Fig. 2. the numbers of nondominated solutions found in the evolution 
progress 

C. the Global Exploration Ability 

Four typical snapshots of the different algorithms in initial 
stages on test function ZDT1 (30 dimensions) are shown in 
Fig 3. In general, during the early stages, the emphasis should 
be on the global exploration ability in the search space, the 
dispersity of individuals should be wider. For the SPEA2, we 
can see that some of the dominated solutions gathered in the 
middle space, this would be result in premature, For the 
MoCell and PESA-II, there are few solutions in the two 
endpoints, so the bound exploration ability would be worse 
than NSGA-II, based on this argument, it can be concluded 
that the NSGAII has a better early global exploration ability 
than the other three multi-objective optimization algorithms. 

D.  the Qucik Select Algorithm(QSA) 

Two individuals X,Y in the population have four kinds of 
relationships  with  each  other:  the first  is  X  dominated Y  
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 Fig. 1. nondominated and dominated solutions compared in first generation 
about four different algorithms  
 
( X Y  ), the second is Y dominated X ( X Y  ), the third  
is X=Y ,and the last is irrelevant (X doesn’t dominated Y,and 
Y doesn’t dominated X ). Motivated by the idea of three-way  
radix quicksort [22][ 23], and based on the relationship of the 

individuals in the population, an improved quick select 
algorithm is devised to select the nondominated solutions 
from the population, and the improved process is describled  

as follow: for each loop around, step 1: a radix individual ix  

is selected randomly from the external population to compare 
with the individuals which are in the evolution population, 
then the evolution population is divided into three sections, 
the front section are the individuals that are dominated by 

the ix , the last section are individuals that dominated or equal 

to ix , and the middle section is the individuals that is 

irrelevant with ix , if ix dominates all the individuals in the 

evolution population, the search will stop and the 
evolutionary operation continue. Step 2: delect the front 

section and select a radix jx  in the last section randomly to 

compare with the individuals in the middle and last sections, 

again divide them into three sections, if jx  dominates all the 

other individuals, remove it to the archive population. Repeat 
step 2 until the front part is empty, now all the individuals left 
in the array are nondominated individuals and they will be 
copied to the archive population, if the archive population is 
full, the improved crowding distance, which is based on 
niche technique[5], is used to delete the individuals which 
have a worse crowding distance value. 

This quick select algorithm can reduce the  comparison 

among the dominated individuals, for example,
1 2

N N , 

1 3
N N , 

1 4
N N ,if 

1
N  is the radix, then 

2 3 4
, ,N N N  are 

arranged in the front of 
1

N , and the comparison among them 

are  ignored in the next loop.  

E. the Multi-Level Dynamic Evolution Algorithm 

In this section, an improved multi-objective optimization 
algorithm, MDEA is described. MDEA is inspired by natural 
phenomenons: human’s growing process from birth to death 
could be divided into childhood, young, adolescent and old 
stages, while for the silkworms and snakes, each new 
exuviation represents the start of a new growth stage. MDEA 
is a population based evolutionary algorithm, a real-coded is 
implemented to avoid the difficulties associated with binary 
representation and bit operations, according to the solutions 
in the external population, the evolution of MDEA is divided 
into four different stages, gradually moving to the pareto 
front, during each stage, some excellent strategies which are 
used in others MOEAs are adopted to improve the efficiency 
of the algorithm. 
 Stage one: in this stage, the nondominated solutions in the 
population are very few, the primary assignment of the 
algorithm is to improve the global exploit capability and to 
prevent the premature convergence.For the purpose of  
decreasing the computation budget and improving the global 
exploit capability,  all the individuals in the population 
(including the dominated solutions and nondominated 
solutions) are selected to perform the reproduction and 
mutation. In this process, NSGAII is applied as it has a better 
global exploration ability in the initial stages as mentioned in 
above,  and the process  of select nondominated solutions in 
the evolution has been canceled, all these would improve the 
efficiency of the algorithm in the early stages.  
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RNSP(ratio of the nondominated solutions in population), 
an important parameter is introduced to distinguish whether 
the evolution is staying in this stage or not, if the RNSP is 
larger than 15%, the evolution steps to stage two.   

Stage two: Stage two refers to the case that the RNSP is 
larger than 15%. As there are more nondominated solutions 
than stage one in the population, the emphasis in this stage is 
to improve the select efficiency. At the same time, in this 
stage the nondominated solutions found in the evolution are 
protected, so the external archive population is used to store 
the nondominated solutions during the search, following the 
scheme applied by SPEA2[6], and The QSA is used to select 
the nondominated solutions during the search.  

Here, the external population metric used in SPEA2 is 
introduced to preserve the nondominated solutions found in 
the search from being destroyed, and QSA is devised to 
improve the efficiency of the selection, the hybrid model in 
stage two aims at maintaining the trade-off between the 
explorations ability of SPEA2 and the efficiency of the QSA, 
it is crucial to the whole algorithm.  

The second important parameter called RNSEP (ratio of 
the nondominated solutions in external population) is used to 
dedicate whether the evolution is lingering in this stage or not, 
if the RNSEP is larger than 60%, the evolution steps to stage 
three.  

Stage three : stage three refers to the case that the RNSEP 
is larger than 60%, the amount of nondominated solutions in 
the population increase sharply. The emphasis in this stage is 
to improve the bound exploration ability of the algorithm. So 
a feedback mechanism which is used in the MOCell is 
employed to improve the the border exploit capability, during 
each evolution, select nf nondominated solutions in the 
external population randomly to the evolution population and 
replace the individuals which have a worse fitness value, the 
details see the references 9. If the value of RNSEP is equal to 
100%, the evolutionary process steps to stage four, otherwise 
it continues stage three. 

Stage four: Stage four refers to the case that the value of  
RNSEP is equal to 100%, which means that the archive is full 
of nondominated solutions. In this stage the improved 
crowding distance[5] is used to allocate the computational 
budget to do heuristic search. When the nondominated 
solutions found in the evolution dominate any of the 
solutions in the external archive population or they have a 
better crowding distance value than the nondominated 
solutions in the archive population, they will be plugged in 
and substitute for the bad ones. The key of this stage is to 
preserve the diversity of the nondominated solutions and to 
speed up the convergence. 

The Details of MDEA are described as follows:  
Input : base parameters ( Pc,Pm , np0, npa ,nf,etc) 
Output : nondominated solutions . 
step1. Initialize all decisive parameters to user-specified 

values; 
step2. Generate P0 individuals in the first generation; 
step3. Run stage 1, rank the individuals with the fitness 

value, select pairs of individuals as parents from the previous 
population P0, perform the reproduction,crossover and 
mutation operations to generate the offsprings and evaluate  
their fitness, if the fitness value is larger than the parents, 
delete the parents and add the offsprings into the population, 
otherwise just delete the offsprings. Finally the RNSP is 

calculated, if its value is larger than 15%, turn to the step 4, 
otherwise continue the step3 

Step4. Run stage 2, open the external archive population 
Pa, continue the evolutionary operations, and use QSA to 
select the nondominated solutions from evolution population 
Pt to the Pa after each evolution, then the RNSEP is calculated, 
if the value is larger than 60%, turn to the step 5,otherwise 
keep on the step4. 

Step5. Run stage 3, select nf individuals in Pa randomly to 
replace the individuals in Pt which are dominated by the 
selected individuals, then continue the evolution operations. 
After each evolution, select the nondominated individuals to 
Pa, if the archive population is full, turn to the step 6, 
otherwise continue step 5. 

Step6. Run stage 4, calculate the crowding distance of 
solutions in Pa, add the better individuals found in the 
evolution to the Pa and delete the individuals with bad 
crowding distance.  

Step7. Terminate the search if the stopping criterion is met; 
otherwise, return to Step 6 and continue. 

III. EXPERIMENT  

This section is devoted to evaluate the MDEA. A number 
of well-known benchmark multi-objective test problems are 
selected from the standard literature on EMO, such as 
Schaffer[19],Fonseca[20],Kursawe[21], as well as some 
complicated problems like the ZDT family problems[14], 
(noted:ZDT1,ZDT2,ZDT3,ZDT4, ZDT6 are selected) and 
the DTLZ family problems [13], (noted :for the DTLZ family 
problems, DTLZ1,DTLZ2, DTLZ3, DTLZ4, and DTLZ5 are 
selected, and the amount of objectives function is three ).  

A. Quality Indicator 

To evaluate the performance of an algorithm on the test 
problems, three quality indicators are used to measure the 
convergence behavior and diversity of solutions. Generation 
Distance[25] is applied to measure the convergence 
performance of the algorithm; Spread[14] is used to measure 
the diversity of the solutions set; Hypervolume ratio 
metric[13] is employed for the evaluation of both the 
convergence performance and diversity of the solutions. To 
determine these issues, it is necessary to know the exact 
location of the true Pareto Front, and for most of the 
benchmark problems used in this work, their Pareto Front 
have been obtained by using enumeration search strategy 
[26]. 

Generational Distance(GD ).  
Van Veldhuizen and Lamont[25] applied this metric to 

evaluate the convergence behavior, it calculates how far the 
elements in the sets of nondominated solutions found by the 
algorithm  from those in the known Pareto optimal sets. it is 
defined as: 

n
2
i

i 1

d

n
G D 

                                           (2) 

Where id  is the Euclidean distance between each of the 

found solutions and the nearest member of the Pareto optimal 
set, and n is the number of vectors in the set of nondominated 
solutions, the Generational Distance represents the distance 
from the Pareto-Optimal solutions set to the true 
Pareto-optimal Fronts, denoting the convergence metric. It is 
clear that a lower value of the GD represents better 
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convergence ability, and  GD =0 indicates that all 
Pareto-optimal solutions found by the algorithm are in the 
Pareto-Front. The nondominated solutions set is normalized 
to guarantee a reliable result before calculating the GD. 

Spread (Δ ) 
This metric is based on the calculation of the Euclidean 

distance between two consecutive nondominated solutions. 
Deb[14] applied this metric to measure the diversity of the 
solutions in two-objective problems. It is defined as:  

1

f i= 1

f

d d d d

d d ( 1)

N

i

N d


  

 
  





                                (3) 

Where id is the Euclidean distance between consecutive 

solutions, d is the mean of these distances, fd and ld  are 

the maximum and minimum Euclidean distances from the 
two extreme Pareto  solutions to the closest nondominated 
solutions. But this metric is working only for the 2-objective 
problems, A.J.Nebro extended this metric for m-objective 
problems based on the modification proposed in[10], it is 
defined as: 

i= 1
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Where m is the numbers of objectives, S is the set of solutions, 

S  is the Pareto solutions, 1( )me e are the m extreme 

solutions in S  . 

0   is the ideal distribution, that means a perfect spread 
out of the solutions in the Pareto Front. We also applied this 
metric to evaluate the diversity of the solutions. 

   
Fig. 2. The hypervolume enclosed by the nondominated solutions 

Hypervolume Ratio 
Hypervolume metric is introduced by Zitzler and Thiele 

[13], the method is to calculate the volume of objective space 
covered by the nondominated solutions sets Q with the 
reference point R,(as shown in Fig 4, the region is enclosed 
by the discontinuous line, Q={1,2,3,4,5}). 

( )

( )
T

F

H V N P
H V R

H V P
                                                     (1) 

1
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T i
i

HV volume v
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 
  

 

f

1
(PF)

P

i
i

HV volume v


 
  

                   (2) 
Where Q is the nondominated solutions set found by the 

algorithm, FP is the Pareto Front which is obtained by using 

enumeration search strategy. HVR returns values in rang 

[0,1], and a larger value of HVR obtainted by the algorithm is 
desirable. 

B. Experimental result 

For the test samples, the experimental results of the three 
quality indicators obtained by the MDEA, NSGAII,SPEA2, 
PESAII and MOCell are shown in table1,2&3. For each test 

problem, the median, x , and interquartile range, IQR, are 
listed in the tables, the best value for each problem is marked 
with green background while the second best value marked 
with yellow background. 

In reference to the GD, the lowest value means that the 
resulting Pareto Front are closest to the true Pareto front, in 
table 1 it can be see that MDEA obtained the best 
performance in 6 of the 13 test MOPs and MOCell got the 
best values in 4 problems, while NSGAII obtained the best 
results in DTLZ1 and SPEA 2 obtained the best result in 
ZDT1, PESA-II obtained the best value in DTLZ4, that 
means in convergence for the five algorithms, the MDEA and 
MOCell did better than NSGAII, SPEA2,and PESA-II. Of 
course we must point out that in most cases the difference in 
GD values got by the different algorithms are very little, that 
indicates all the algorithms have the similar ability to 
compute the accurate Pareto front.  

In terms of the spread (Δ), the lowest value means that the 
diversity of the solutions got by the corresponding algorithm 
is the best, from table 2, it is clear that MDEA obtained the 
best results in 6 of the 13 test problems while MoCell got the 
best results in 5 problems, NSGAII and SPEA2 yielded the 
best value only 1 problem respectively. To illustrate this fact 
graphically, the simulation results of ZDT1 obtained by five 
algorithms respectively are  shown in Fig.5, obviously, 
MDEA obtained a better spreadout solutions than 
NSGA-II,SPEA2 and PESA-II, the non-dominated solutions 
found by MDEA achieved an almost perfect distribution 
along the Pareto front. 

Finally, with regard to the HVR indicator, the measure of 
both the convergence and the diversity, the HVR metric 
should prove the results of the two other metric, the larger 
value of HVR obtained by the algorithms, the better the 
corresponding algorithm is. As we can see from table 3, 
MDEA obtained the best results in 7 of the 13 test problems 
while MoCell got the best results in 5, NSGAII yielded the 
best value in 1 DTLZ1 problem. From the comparison we can 
see that MDEA outperformed the other four algorithms.  

On the other hand, we can see from table 3, SPEA2 and 
PESA-II yield a value of zero on the DTLZ1 and DTLZ3 
while NSGA-II yield a value of zero on the DTLZ3, which 
means that they can’t convergence to the  true Pareto Front of 
the problems. 

Overall, considering the results of the experiments, we 
believe that the MDEA algorithm is a novel and efficient 
algorithm in solving MOPs because it obtained the 
competitive values in most test problems and it performed 
very stablly in terms of convergence, diversity or both.  

C. the Running Time of the Algorithms 

The average running times (in millisecond) consumed by 
MDEA, NSGAII, SPEA2, PESA-II and MoCell in solving 
the  ZDT1, ZDT4, DTLZ1, DTLZ3, Kursaw problems are
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Fig. 6. running time of the different algorithm on 5 test problems 

presented in Fig 6. The results are based on the experimental 
setting metioned above. We can observe from Fig 6,  the test 
problems, the MoCell occupied the least running time while 
the SPEA2 was on the contrary, this may be resulted from the 
different strategies: MoCell makes use of parallelism [9], 
while SPEA2 makes use of an expensive archive truncation 

procedure whose worst run-time complexity is  3O n  [14]. 

Though archive population is hybridized in MDEA, the 
running time of MDEA is markedly less than that of NSGAII, 
SPEA2, because MDEA applied the QSA to construct the 
archive nondominated population, whose best running time 
complexity is  l o gN N  and worst run-time complexity 

is  2
Ο N [23] 

D. Running Time Sentivity to the RNSP and  RNSEP 
Parameters in MDEA 

The impact of the parameters RNSP & RNSEP in MDEA 
are studied in this section. The test problems DTLZ1 and 
ZDT1 are adopted for parameters analysis because of their 

complexity. Figure 7 shows the average running time versus 
RNSP &RNSEP parameters. The value of RNSP is at the 
range [0.1,0.8] while the value of RNSEP is at the range 
[0.20,1].The value of RNSP is smaller than that of RNSEP, 
as the RNSP is the demarcation between the stage one and 
stage two while the RNSEP is the demarcation between stage 
two and stage three. The range of [0.1,0.8] is adequate for 
RNSP, because if its value is less than 10%, the first stage  
won’t work.From Fig 7, we can see that when RNSP and 
RNSEP are both small or large, MDEA keeps a long running 
time, only when RNSP is range in [15%-30%] and RNSEP is 
range in [50%-65%], MDEA keeps a shorter running time. 
The reason may be as follows: when the RNSP is large, the 
stage one employed NSGA-II to do exploration in the 
objectives space, it will take relatively long time to search the 
nondominated solutions; when RNSEP is large, the QSA in 
stage two will take more time to select the nondominated 
solutions. therefore, to improve the efficiency or reduce the 
running time of MDEA,the value of RNSP should not be too 
large, and the value of RNSEP should be at a reasonable 
value, here 15% for RNSP  and 55% for RNSEP are 
appropriate value for them. 

 

IV. CONCLUSION 

In the field of multi-objective optimization algorithms, 
most of the algorithms applied the fixed mechanisms during 
the whole evolution, while the adaptive and dynamic 
mechanism for the different evolutionary processes are 
seldomly  involved, therefore, a MDEA algorithm is 
proposed.The experimental study has shown that MDEA is 
able to converge to the true Pareto optimal front for 13 
benchmark test functions. three quality indicators are used to 
compare the performance of MDEA with the other famous 
MOEAs. The results of the experiment indicate that MDEA
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Table 1 Median and interquartile range of the GD indicator 
problems MDEA NSGAII SPEA2 PESA-II MOCell 

 IQR    IQR    IQR    IQR     IQR  

Schaffer 2.35E-04 2.12E-04 2.32E-04 1.71E-05 2.31E-04 1.53E-05 2.39E-04 1.20E-05 2.33E-04 1.78E-05 

Fonseca  1.65E-04 1.45E-06 4.60E-05 4.71E-05 3.25E-04 3.40E-05 2.22E-04 2.40E-05 2.01E-04 2.70E-05 

Kursawe  1.33E-04 1.10E-05 2.08E-04 3.80E-05 1.21E-04 1.90E-05 2.59E-04 2.20E-05 1.36E-04 1.40E-05 

ZDT1     1.51E-04 2.33E-05 1.88E-04 4.43E-05 1.59E-04 1.45E-05 1.60E-04 1.76E-05 1.53E-04 3.76E-05 

ZDT2     5.08E-04 7.40E-05 6.21E-04 4.67E-05 6.27E-04 3.24E-05 5.85E-04 4.56E-05 5.06E-04 5.67E-05 

ZDT3     2.02E-04 9.45E-05 2.10E-04 1.85E-05 2.33E-04 2.41E-05 3.11E-04 2.50E-05 1.95E-04 2.25E-05 

ZDT4     5.33E-04 1.24E-05 5.28E-04 7.63E-05 5.74E-04 2.90E-05 6.27E-04 5.02E-05 5.40E-04 5.90E-05 

ZDT6     5.42E-04 2.00E-05 5.62E-03 5.30E-05 8.20E-04 7.30E-05 5.48E-04 2.50E-05 5.51E-04 1.80E-05 

DTLZ1    2.14E-04 8.10E-05 1.81E-04 2.60E-05 1.82E+00 1.80E+00 3.63E-04 5.10E-05 4.52E-04 7.10E-05 

DTLZ2    7.38E-04 4.90E-05 1.26E-04 2.30E-05 1.83E-04 4.70E-05 1.77E-04 4.10E-05 7.29E-04 6.80E-05 

DTLZ3    4.55E-01 4.10E-02 1.65E+00 1.81E-01 7.81E+00 4.60E-01 5.72E+00 3.00E-02 5.50E-01 6.30E-02 

DTLZ4    4.97E-03 2.80E-04 4.48E-03 4.40E-04 5.22E-03 2.00E-04 3.16E-03 1.70E-04 4.87E-03 3.70E-04 

DTLZ5    2.55E-04 3.80E-05 6.36E-04 7.30E-05 7.10E-04 7.60E-05 5.80E-04 5.50E-05 2.50E-04 4.10E-05 

 
 
Table 2 Median and interquartile range of the SPREAD indicator 
problems MDEA NSGAII SPEA2 PESA-II MOCell 

 IQR   IQR    IQR    IQR     IQR  

Schaffer 1.20E-01 1.50E-02 2.20E-01 2.50E-02 2.43E-01 7.10E-02 1.44E-01 2.70E-02 1.29E-01 1.70E-02

Fonseca  3.85E-02 1.90E-02 6.85E-02 3.70E-02 6.76E-01 4.90E-02 5.89E-02 1.80E-02 4.12E-02 2.10E-02

Kursawe  2.94E-01 3.50E-03 4.39E-01 9.30E-03 5.43E-01 8.90E-02 3.62E-01 1.80E-02 2.78E-01 2.00E-02

ZDT1     1.06E-01 1.50E-02 2.62E-01 2.30E-02 1.79E-01 6.10E-02 1.85E-01 2.10E-02 1.54E-01 2.80E-02

ZDT2     1.09E-01 1.74E-02 4.06E-01 1.80E-02 1.39E-01 7.40E-02 1.85E-01 3.30E-02 1.08E-01 2.10E-02

ZDT3     6.24E-01 2.24E-01 7.37E-01 2.50E-01 7.06E-01 6.80E-02 8.66E-01 2.00E-02 7.15E-01 2.70E-02

ZDT4     2.27E-01 3.70E-02 3.73E-01 3.80E-02 2.64E-01 6.20E-02 4.16E-01 1.80E-01 1.95E-01 1.60E-01

ZDT6     2.08E-01 3.60E-02 3.52E-01 4.90E-02 2.64E-01 4.70E-02 2.58E-01 2.10E-02 2.85E-01 1.90E-02

DTLZ1    6.13E-01 1.60E-01 5.93E-01 3.70E-01 6.45E+00 1.10E-01 7.43E+00 5.90E-01 6.31E-01 1.20E+00

DTLZ2    1.16E-01 5.90E-02 5.02E-01 6.10E-02 1.05E-01 7.00E-02 1.90E-01 1.40E-02 1.21E-01 1.50E-02

DTLZ3    5.91E-01 2.00E-01 2.81E+00 2.35E-01 1.38E+00 6.20E-01 1.26E+00 2.90E-01 6.36E-01 4.70E-01

DTLZ4    1.15E-01 6.50E-02 4.93E-01 6.73E-02 1.01E-01 9.20E-02 3.02E-01 4.50E-01 1.11E-01 4.50E-01

DTLZ5    1.85E-01 2.10E-02 2.39E-01 2.45E-02 4.46E-01 7.00E-02 2.89E-01 2.80E-02 1.90E-01 2.40E-02

 
 
Table 3 Median and interquartile range of the HVR indicator 
problems MDEA NSGAII SPEA2 PESA-II MOCell 

 IQR   IQR    IQR    IQR     IQR  

Schaffer 8.43E-01 4.10E-02 8.49E-01 3.20E-02 8.20E-01 7.40E-02 8.23E-01 9.40E-02 8.33E-01 4.30E-02

Fonseca  8.83E-01 2.70E-02 8.21E-01 6.30E-02 8.21E-01 3.20E-02 8.23E-01 3.00E-02 8.31E-01 2.00E-02

Kursawe  8.40E-01 1.50E-02 7.14E-01 3.50E-02 8.21E-01 2.10E-02 8.11E-01 2.20E-02 8.20E-01 8.10E-02

ZDT1     8.56E-01 3.30E-02 8.39E-01 4.50E-02 8.30E-01 4.00E-02 8.56E-01 9.30E-02 8.46E-01 3.80E-02

ZDT2     7.52E-01 3.70E-02 7.26E-01 4.60E-02 7.30E-01 5.10E-02 7.14E-01 1.40E-02 7.29E-01 6.30E-02

ZDT3     8.41E-01 3.40E-02 8.15E-01 2.00E-02 8.14E-01 4.00E-02 8.16E-01 1.00E-02 8.52E-01 2.70E-02

ZDT4     6.55E-01 6.10E-02 6.43E-01 5.50E-02 5.07E-01 2.10E-01 1.07E-01 2.10E-01 6.460E-01 2.10E-02

ZDT6     9.00E-01 1.80E-02 8.86E-01 1.60E-02 8.73E-01 1.10E-02 7.99E-01 2.90E-02 9.01E-01 1.40E-02

DTLZ1    7.54E-01 6.80E-01 7.61E-01 1.80E-02 0 0 0 0 7.53E-01 6.90E-02

DTLZ2    8.38E-01 5.70E-02 7.77E-01 6.90E-02 7.94E-01 3.90E-02 7.800E-01 3.10E-02 7.86E-01 6.40E-02

DTLZ3    8.21E-01 1.60E-01 0 0 0 0 0 0 8.16E-01 3.60E-01

DTLZ4    7.99E-01 5.70E-02 7.77E-01 9.10E-02 7.87E-01 1.80E-01 7.60E-01 1.90E-01 7.83E-01 5.60E-02

DTLZ5    9.40E-02 4.00E-02 9.37E-02 2.50E-02 9.33E-02 3.30E-02 9.36E-02 2.50E-02 8.94E-02 3.60E-02
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Fig. 7. running time versus parameters RNS on solving ZDT1 and DTLZ1by MDEA 

is a competitive and effective method considering the 
convergence and diversity measures. 

A matter of future work is the application on solving the 
real-world problems. In this sense,we intend to employ  
MDEA to solve complicated problems in the multi-shop 
scheduling with mixed messages. 
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