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Abstract—

In different fields of science and engineering
(medicine, economics, oceanography, biological sys-
tems, etc) the False Nearest Neighbors (FNN)
method has a special relevance. In some of these ap-
plications, it is important to provide the results in
a reasonable time scale, thus the execution time of
the FNN method has to be reduced. To achieve this
goal, a multidisciplinary group formed by computer
scientists and physicists are collaborative working on
developing High Performance Computing implemen-
tations of one of the most popular algorithms that
implement the FNN method: based on Kd-tree data
structure and based on Box-assisted algorithm. In
this paper, a comparative study of the distributed
memory architecture implementations carried out in
the framework of this collaboration, is presented.
As a result, two parallel implementations for Box-
assisted algorithm and one implementation for the
Kd-tree structure are compared in terms of execution
time, speed-up and efficiency. In terms of execution
time, the approaches presented here are from 2 to 19
times faster than the sequential implementation, and
the kd-tree approach is from 2 to 6 times faster than
the box-assisted approaches.

Keywords: Nonlinear Time Series Analysis, False
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1 Introduction

In nonlinear time series analysis the false nearest neigh-
bors (FNN) method is crucial to the success of the sub-
sequent analysis. Many fields of science and engineering
use the results obtained with this method. But the com-
plexity and size of the time series increases day to day
and it is important to provide the results in a reason-
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able time. For example, in the case of electrocardiogram
study (ECG), this method have to achieve real-time per-
formance in order to take aome prevension actions. With
the development of the parallel computing, large amounts
of processing power and memory capacity are available to
solve the gap between size and time.

The FNN method was introduced by Kennel et al. [1].
Let X = {x(i) : 0 ≤ i < n} a time series. We can
construct points (delay vectors) according to Eq.(1):

y(i) = [x(i), x(i + τ), . . . , x(i + (d − 1)τ)] (1)

where τ is the embedding delay and d is the embedding
dimension (Fraser and Swinney [2]). The Takens embed-
ding theorem [3] states that for a large enough embedding
dimension d ≥ m0, the delay vectors yield a phrase space
that has exactly the same properties as the one formed
by the original variables of the system. The FNN method
is a tool for determining the minimal embedding dimen-
sion d. Working in any dimension larger than the mini-
mum leads to excessive computation when investigating
any subsequent question (Lyapunov exponents, predic-
tion, etc.).

The method identifies the nearest neighbor y(j) for each
point y(i). According to Eq. (2), if the normalized dis-
tance is larger than a given threshold Rtr, then the point
y(i) is marked as having a false nearest neighbor.

|x(i + dτ) − x(j + dτ)|

||y(i) − y(j)||
> Rtr (2)

Eq. (2) has to be calculated for the whole time series and
for several dimensions d = 1, 2, . . . ,m until the fraction
of points, which must be lower than Rtr, is zero, or at
least sufficiently small (in practice, lower than 1%).

While greater is the value of n (length of the time series),
the task to find the nearest neighbor for each point is
more computationally expensive. A review of methods
to find nearest neighbors, which are particularly useful
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for the study of time series data, can be found in [4].
We focused in two approaches: based on the box-assisted
algorithm, developed in the context of time series anal-
ysis by Grassberger [5]; and the based in a kd-tree data
structure [6, 7] developed in the context of computational
geometry.

According to Schreiber [4], for time series that have a
low dimension of embedding (e.g. up to the 10’s), the
box-assisted algorithm is particularly efficient. This al-
gorithm can offer a lower complexity of O(n) under cer-
tain conditions. By the other hand, accordingly with the
literature if the dimension of embedding is moderate an
effective method for nearest neighbors searching consists
in using a kd-tree data structure [6, 7]. From the compu-
tational theory point of view, the kd-tree-based algorithm
has the advantage of providing an asymptotic number of
operations proportional to O(n log n) for a set of n points,
which is the best possible performance for arbitrary dis-
tribution of elements.

We have applied the paradigm of parallel computing to
implement three approaches directed towards distributed
memory architectures, in order to make a comparative
study between the method based on the box-assisted
algorithm and the method based on the kd-tree data
structure. The results are presented in terms of per-
formance metrics for parallel systems, that is, execution
time, speed-up and efficiency. Two case studies have been
considered to carried out this comparative study. A theo-
retical case study which consists on a Lorenz model, and
a real case study which consists on a time series belonging
to electrocardiography.

The paper is organized as follows. After this introduction,
a description of the considered approaches is introduced
on Section 2. On section 3, the experimental results are
presented. Finally, on Section 4 some conclusions and
future work are outlined.

2 Method

We selected two programs to start this work: the
false nearest program based on the box-assisted algo-
rithm [8, 9]; and the fnn program based on a kd-tree data
structure [10].

We employ the paradigm Single-Program, Multiple Data
(SPMD) [11] to design the three parallel approaches. A
coarse-grained decomposition [12] has been considered:
we have a small number of tasks in parallel with a large
amount of computations. The approaches are directed to-
wards distributed memory architectures using the Mes-
sage Passing Interface (MPI [13]) standard for commu-
nication purpose. Two approaches are based on the
box-assisted algorithm and the another approach is based
on the kd-tree data structure.

2.1 Approaches Based on Box-assisted Al-
gorithm

The box-assisted algorithm [5] considers a set of n points
y(i) in k dimensions. The idea of the method is as follows.
Divide the phase space into a grid of boxes of side length
ε. Each point y(i) lies into one of these boxes. The
nearest neighbors there are located in the same box or in
one of the adjacent boxes. The false nearest program
is a sequential implementation of the FNN method based
in this algorithm.

By profiling the false nearest program in order to carry
out the parallel approaches, four tasks were identified.
Let X a time series, Y a set of points constructed ac-
cording to Eq. (1), BOX an array that implements the
grid of boxes (or mesh), and p the number of processes.
Two parallel implementations were formed based on these
four tasks:

Domain Decomposition Time series X is distributed
to the processes. Two ways of distribution have been
developed: Time Series (TS) and Mesh (M). In a TS
data distribution the time series is splitted into p

uniform parts, of length n
p
, being n the length of the

time series. In a M data distribution, each process
computes the points that lie in its range of rows. The
range of the mesh rows is assigned by s

p
, where s is

the size of the BOX.

Grid Construction The BOX array is filled. Two ways
of grid construction have been developed: S (Sequen-
tial) and P (Parallel). In a S construction each pro-
cess fill the BOX sequentially, thus each one has a
copy. In a P construction each process fills a part of
the the group of boxes located over a set of assigned
mesh rows.

Nearest Neighbors Search Each process solves their
subproblems given the domain decomposition way.
In a TS data distribution each process use the same
group of points Y . In a M data distribution each
process can use different groups of points.

Communication of Results Processes use MPI to
synchronize the grid construction and to communi-
cate the partial results at the end of each dimension.

The approaches were called follow the next nomencla-
ture: DM-P-M meaning a Distributed Memory implemen-
tation considering that the grid construction is in Parallel
and the time series is distributed according to the Mesh;
DM-S-TS meaning a Distributed Memory implementa-
tion considering that the grid construction is Sequential
and the Time Series is uniformily distributed to the pro-
cessess.
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2.2 Approach Based in the kd-tree Data
Structure

A kd-tree data structure [6, 7] considers a set of n points
y(i) in k dimensions. This tree is a k-dimensional bi-
nary search tree that represents a set of points in a k-
dimensional space. The variant described in Friedman
et al. [7] distinguish between two kinds of nodes: inter-
nal nodes partition the space by a cut plane defined by
a value of the k dimensions (the one containing a maxi-
mum spread), and external nodes (or buckets) store the
points in the resulting hyperrectangles of the partition.
The root of the tree represent the entire k-dimensional
space. The fnn program is a sequential implementation
of the FNN method based in this structure.

fnn program has been also analyzed by means of a profile
tool before making the parallel implementation, identify-
ing five main tasks. Thus, let X a time series, n the length
of the time series, Y a set of points constructed accord-
ing to Eq. (1), KDTREE a data structure that implement
the kd-tree, p the number of processes, and q = {1 . . . p}
a process identifier. For convenience we assume that p

is a power of two. The parallel implementation called
KD-TREE-P was formed based on these five tasks:

Global kd-tree building The first log p levels of
KDTREE are built. All processors perform the same
task, thus each one has a copy of the global tree.
The restriction n ≥ p2 is impose to ensure that the
first log p levels of the tree correspond to nonterminal
nodes instead of buckets.

Local kd-tree building The local KDTREE is built. In
the level log p of the global tree are p nonterminal
nodes. Each processor q build a local kd-tree us-
ing the qth-node like root. The first log p levels are
destroyed and KDTREE is pointed to local tree.

Domain Decomposition Time series X is distributed
to the processess. The building strategy impose a
distribution over the time series. Thus, the time se-
ries is split according to the kd-tree algorithm and
the expected value of items contained in each local
tree is approximately n

p
.

Nearest Neighbors Search Each process solves their
subproblems. Each process search the nearest neigh-
bors for all points in Y that are in the local KDTREE.

Communication of Results Processes use MPI to
communicate theirs partial results at the end of
whole dimensions. The master process collects all
partial partial results and reduces them.

3 Experimental results

In order to test the performance of the parallel implemen-
tations, we have considered two case studies: the Lorenz

time series generated by the equations system described
in 1963 by E.Lorenz [14]; the electrocardiogram (ECG)
signal generated by a dynamical model introduced in 2003
by McSharry et al. [15]. The Lorenz system is a bench-
mark problem in nonlinear time series analysis and the
ECG model is use for biomedical science and engineering
[16].

The parallel implementations have been run in a super-
computer called GALGO, which belongs to the Albacete
Research Institute of Informatics [17]. The parallel plat-
form consists in a cluster of 64 machines. Each machine
has two proccesors Intel Xeon E5450 3.0 GHz and 32 GB
of RAM memory. Each proccesor has 4 cores with 6144
KB of cache memory. The machines are running RedHat
Enterprise version 5 and using an Infiniband intercon-
nection network. The cluster is presented as a unique
resource which is accessed through a front-end node.

The results are presented in terms of performance met-
rics for parallel systems described in Grama et al. [12]:
execution time Tp, speed-up S and efficiency E. These
metrics are defined as follows:

• Execution Time: The serial runtime of a program
is the time elapsed between the begining and the
end of its execution on a sequential computer. The
parallel runtime is the time that elapses from the
moment that a parallel computation starts to the
moment that the last processing element finishes its
execution. We denote the serial runtime by Ts and
the parallel runtime by Tp.

• Speed-up is a measure that captures the relative
benefit of solving a problem in parallel. It is defined
as the ratio of the time taken to solve a problem in
a single processing to the time required to solve the
same problem on a parallel computer with p identi-
cal processing elements. We denote speed-up by the
symbol S.

• Efficiency is a measure of the fraction of time for
which a processing element is usefully employed; it
is defined as the ratio of speed-up to the number
of processing elements. We denote efficiency by the
symbol E. Mathematically, it is given by E = S

p

Let p the number of processors, the execution time of the
approaches have been tested for p = {1, 2, 4, 8, 16, 32},
where p = 1 correspond to the sequential version of the
approaches. We used one million records of the time se-
ries to calculate the ten first embedding dimensions, and
obtaining that the optimal time delay for Lorenz time
series is τ = 7 and for ECG signal is τ = 5.

In order to obtain the best runtime of the approaches
based in a box-assisted algorithm we found the best size
of BOX for each value of p (tables 1 and 2). The size of
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BOX define the number of rows and columns for the grid of
boxes. The values for p = 1 correspond to the sequential
version of the program false nearest.

p DM-P-M DM-S-TS

1 8192 8192
2 4096 4096
4 2048 4096
8 2048 4096

16 2048 2048
32 2048 2048

Table 1: Size of BOX for each value of p using a Lorenz
time series.

p DM-P-M DM-S-TS

1 4096 4096
2 4096 4096
4 4096 4096
8 2048 4096

16 2048 2048
32 2048 2048

Table 2: Size of BOX for each value of p using a ECG time
series.

We have run 10 tests to obtain the median value of the
execution time Tp. In total 360 tests were performed.
The performance metrics results are showing in Figs.[1-
2].

Sequential kd-tree implementation shows a lower ex-
ecution time than box-assisted approach, since the
grid construction stage on box-assisted implementation
in TISEAN is very expensive in terms of execution time.

The behaviour of the Lorenz case study and the ECG
case study is quite similar. Notice that, according to
Figures 1.b and 2.b, it is possible to appreciate a super-
linear speed-up for kd-tree implementation when p < 8
and these performance decreases when p > 8. The super-
linear speed-up is explained due to the fact that the cache
memory is better exploited and that when the tree is
splitted less searches have to be done at each subtree.
With respect to the lost of performance, this situation is
produced due to different causes. The first one is that,
evidently, the overhead due to communications increases.
Also, the most importat cause is that the sequential part
of our implementation becomes every time more relevant
with respect to the parallel one.

DM-S-TS is the box-assisted implementation that pro-
vides the best results for the Lorenz attractor and the
ECG signal. The reason is the very best data distribution
with regard to DM-P-M. However, the reconstruction of
the mesh is not parallelized in DM-S-TS implementation.
So, the sequential part makes the reduction of execution
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Figure 1: Performance metrics for the Lorenz case study:
(a) Execution time, (b) Speed-up and (c) Efficiency
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Figure 2: Performance metrics for the ECG case study:
(a) Execution time, (b) Speed-up and (c) Efficiency

time less significant when more CPUs are used. However,
as the execution time of find neighbors is increased (e.g.
in larger times series data), this circumstance becomes
very less important.

For Lorenz attractor, the DM-S-TS implementation is
around 1.8 faster than the sequential program when it
uses 2 CPUs, and around 12 when it uses 32 CPUs. This
means that the efficiency for 2 CPUs is around 92% and
decreases to 37% when using 32 CPUs. As Fig. Y shows,
the best box-assisted parallel implementation achieves a
speed-up of around 16 when it is run on 32 CPUs of
GALGO. Moreover, the time saving is around 94% using
32 CPUs, and even using only 4 CPUs the time saved is
around 71%. Unlike previous cases, the efficiency of best
implementation decreases more slowly.

An optimization of TISEAN has been used. It allows
the best mesh size to be tuned for each case. In case of
use original TISEAN (fixed mesh size), the reduction of
execution time would be more important.

According to the experimental results, kd-tree-based par-
allel implementation obtains the best performance than
the box-assisted-based parallel implementation, almost in
terms of execution time, for both cases studies. Due to
the spectacular execution time reduction provided by the
kd-tree-based parallel implementation, the performance
in terms of speed-up and efficiency seems to be worst,
with respect to the other approaches.

4 Conclusions

In this paper, a comparative study between the dis-
tributed memory implementations of two different ways
to compute the False Nearest Neighbors method have
been presented, that is, the based on the box-assisted
algorihtm and the based on kd-tree data structure. To
make this comparative study three different implementa-
tions have been developed: two implementations based
on box-assited algorithm, and one implementation based
on kd-tree data structure.

The most important metric to consider is how well the
resulting implementations accelerate the compute of the
minimal embedding dimension, which is the ultimate goal
of the FNN method. In terms of the execution time, the
parallel approaches are from 2 to 19 times faster than the
sequential implementation, and the kd-tree approach is
from 2 to 6 times faster than the box-assisted algorithm.

With respect to the experimental results, the kd-tree-
based parallel implementation provides the best perfor-
mance in terms of execution time, reducing dramatically
the execution time. As a consequence, the speedup an
efficiency are far from the ideal.

About related works, in the context of parallel implemen-
tations to compute FNN method, the work carried out
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by the authors could be considered as the first one. The
authors are working also on considering shared memory
implementations (Pthreads [18, 19] or OpenMP [20, 21])
and hybrid (MPI+Pthreads or MPI+OpenMP) parallel
implementations.

Also, as a future work, the author are considering to de-
velope GPUs-based parallel implementation of the algo-
rithms considered in this paper.

However, it is necessary to deal with more case studies
of special interest for the authors: wind speed, ozone, air
temperature, etc.

To sum-up, we hope that our program will be useful in
applications of nonlinear techiques to analyze real time
series as well as artificial time series. This work represents
the first step of nonlinear time series analysis, that it is
becomes meaningful when considering ulterior stages on
the analysis as prediction, and when for some applications
the time represents a crucial factor.
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