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Abstract— The difference in distributions between
datasets from different domains, such as different in-
formation sources, hinders the direct application of
a learned model from one domain to another. We
have developed a framework for the adaptation of
relational logic models, in particular, Markov Logic
Network (MLN), from a source domain to a target do-
main solving the same task using only unlabeled data
in the target domain. In our proposed framework, we
modify the model from two aspects, the dependency
information across the two domains and within the
target domain. First, the relational logic models of
the two domains should share certain amount of simi-
larities due to the same goal and similar nature of the
data. Hence, we perform model adaptation by pe-
nalizing the difference in the two domains and jointly
maximizing the likelihood of the target domain and
minimizing the difference between the source and the
target domain MLNs. Second, closely related infor-
mation appeared within the target domain is used as
additional clues in resolving ambiguous decision mak-
ing. Potential ambiguity of the model is identified and
is refined through incorporating such closely related
information. As a result, the adapted model is tai-
lored to the target domain. Our experimental results
demonstrate that our adaptation framework is able to
improve the performance on the target domain.

Keywords: model adaptation, relational logic models,

Markov logic networks

1 Introduction

Domain adaptation is an actively investigated task in the
natural language processing community. Very often, in
solving a particular task, we may have plenty of labeled
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data from one information source. However, we may need
to process data from another information source with dif-
ferent distributions. The two datasets from different in-
formation sources are referred as two different domains.
Domains may refer to documents from different infor-
mation sources, different topical categories, or different
registers in linguistics. For example, one may have la-
beled documents from the Wall Street Journal, but the
actual goal is to develop a model for performing part-
of-speech tagging for biomedical texts. Documents from
the Wall Street Journal and the biomedical texts are re-
ferred as the source and the target domains respectively.
Due to the difference in the distributions between the
two domains, the learned model for the source domain
may not be adequate for the target domain. One ap-
proach to handling such situation is to perform annota-
tions and prepare labeled data for the target domain so
that a model specific to the target domain can be in-
duced. However, in many natural language processing
tasks, limited annotated data is produced with expensive
cost. Therefore, how to improve the performance in the
target domain with minimal efforts is the primary goal
of domain adaptation. Different from common works in
domain adaptation which are given with labeled source
domain data, our paper focuses on the setting where we
are given a model that is already trained for the source
domain. With only unlabeled data from the target do-
main, we adapt the source domain model to the target
domain.

Though domain adaptation has been actively studied, lit-
tle investigations have been carried for relational logic
models. The reason is that knowledge represented in a
relational logic model for a domain may be very specific
to that particular domain and very often expert knowl-
edge is used in constructing the models. Minor changes
to the model may result in large degradation of perfor-
mance. Adapting the model to another domain becomes
even more challenging when only unlabeled target do-
main data is given. In this paper, we propose a frame-
work of model adaptation for a relational logic model,
specifically Markov Logic Networks (MLN) [10]. MLN is
a combination of probabilistic and first-order logic graphi-
cal models. The representation of first-order logic enables
flexible model construction involving relations between
entities. A standard MLN consists of a set of first-order
logic formulae describing the logic relations of the task
and a set of weights, in which a weight is associated with
each formula. Our framework performs model adaptation
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in a situation where an MLN has already been learned for
a source domain and unlabeled data from the target do-
main is given.

Two major issues are considered in our framework. First,
the weights of the logic formulae have to be refined to
capture the difference in the distributions between the
source and the target domain. Though the distributions
are different, similarities exist both the source and the
target domains. Therefore, we hypothesize that the
distribution of the target domain may not deviate far
from the source domain. Hence, by penalizing the
difference in the two domains, we jointly seek to maximize
the likelihood of the target domain and minimize the
difference between the MLNs of the source and the target
domains. Second, there must be some formulae in the
source domain MLN which lead to ambiguous decisions
for the target domain. By analyzing the adapted weights
of the target domain, those ambiguous logic formulae
are identified. We propose an approach to refining the
logic formulae by analyzing dependency information in
the target domain. As a result, an MLN specific to
the target domain can be discovered. Our experimental
results demonstrate that our adaptation framework is
able to improve the performance on the target domain.
Both the logic formulae and the weights are refined such
that they are more suitable for the target domain.

2 Related Work

Traditional MLN structure learning methods aim at con-
structing logic formulae of MLN with labeled training
data. Kok and Domingos [3] first introduced a proba-
bilistic method for learning MLN structure which outper-
forms previous inductive logic programming (ILP) meth-
ods. More recently, Kok and Domingos [4] presented an
approach which constructs candidate clauses by consid-
ering the relational database as a hypergraph. Although
existing works of structure learning can refine an existing
MLN structure, considerable amount of labeled data on
the target domain has to be provided.

A related task known as transfer learning on MLN is
actively investigated. It focuses on mapping a knowledge
base from one task to another, where the predicates
and variables are different. This problem setting of
these transfer learning methods is different from the one
we intend to solve in this paper. Mihalkova et al. [7]
proposed to first map the predicates in a source MLN
to the target domain and then revise the mapped MLN.
The transfer learning problem was also referred as deep
transfer by Davis and Domingos [1].

Domain adaptation has been widely studied for many
other learning algorithms. More recently, domain adapta-
tion models using unlabeled data from the target domain
have been investigated. Some works have attempted to
learn a new representation for bridging the source and

the target domain [9]. Other works try to evaluate the
difference in distributions between two domains by a non-
parametric distance estimate. Pan et al. [8] applied the
Kernel Maximum Mean Discrepancy to learn the embed-
ded space where the distance between distributions of the
source and the target domain is minimized. Guo et al. [2]
developed a model using latent semantic association to
overcome the distribution gap between domains. An-
other research direction for domain adaptation is instance
weight assignment. Zhong et al. [12] seek a common fea-
ture space by utilizing the Kernel Discriminative Analysis
(KDA) and then re-selects and re-weighs source domain
examples to remove the bias of the mapping. However,
most of these works assume that the conditional distribu-
tion of the label values given a data instance is unchanged
between the source and target domains.

3 Background and Problem Definition

3.1 Background of Markov Logic Network

Markov Logic Network (MLN), proposed by Richardson
et al. [10], aims at representing the knowledge in first-
order logic in a probabilistic manner to handle uncer-
tainty. It is composed of a knowledge base containing
a set of first-order formulae and a set of weights, each
of which is associated with a formula. Given an MLN
and a set of constants, a ground Markov network is au-
tomatically obtained by applying the formulae to the set
of constants, i.e. grounding of formulae. Of the Markov
network constructed, a node corresponds to each ground-
ing of the predicates specified in the formulae and each
node can be equal to 0 or 1 representing the truth value
of the grounding. Two nodes are connected by an edge
if their corresponding ground predicates appear together
in the same formula. Essentially, the probability distri-
bution of a ground Markov network, X, can be expressed
as follows:

P (X = x) =
1

Z
exp(

FX

i

wini(x)) =
1

Z

Y
φi(x{i})

ni(x)
(3.1)

where P (X) refers to the probability distribution over
all possible worlds x, the assignment of truth values;
F represents the number of formulae in the MLN; wi

refers to the weight for the i-th formula; ni(x) refers
to the number of true groundings of a formula in the
possible world x, and x{i} is the truth value of the atoms,
the groundings of of the predicates, in the formula, and
φi(x{i}) = ewi ; Z is the normalizing factor which is the
sum of the probabilities over all possible worlds.

3.2 Learning MLN

A domain Ds in a text mining problem may refer to a
set of documents collected from the same information
source. To solve the problem, we can define two sets of
predicates, namely, evidential predicates and query predi-
cates. Evidential predicates refer to the predicates whose
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truth value can be determined from the observation of
the text, while query predicates refer to the predicates
whose truth value cannot be determined directly. For
example, in citation segmentation, the objective is to
extract the fields of a citation. We can define a query
predicate called InField(i, f, c) which represents if the i-
th position of the citation c is part of the field f , where
f ∈ {Title, Author, V enue}. An evidential predicate can
be HasToken(t, i, c) representing that the citation c has
a token t in the i-th position. We can construct an MLN,
denoted by MLNs = 〈Fs,Ws〉, which consists of a set of
logic formulae Fs associated with the weights Ws, for the
domain Ds to solve the text mining problem. The objec-
tive is to infer the truth value of the groundings for the
query predicates given the truth values of the groundings
of the evidential predicates.

Given a set of training examples in the domain Ds,
such that the truth values of the groundings for query
predicates are known, MLN weight learning aims at
automatically learning the weight Ws for each of the
logic formulae in MLNs. To achieve this, we used a more
efficient alternative to Equation 3.1 as follows [10]:

PWs (X = x) =

nY

l=1

PWs (Xl = xl|MBX(Xl)) (3.2)

where Xl refers to the l-th grounded atom; xl refers to
the state of Xl in the training data; MBX(Xl) refers
to the state of the Markov blanket of Xl; and n is the
total number of grounded atoms in the training data; the
subscript Ws denotes that the probability is computed
using the weight Ws. The learned MLN can then be
applied to the testing data in the same domain Ds.

3.3 MLN Adaptation

One major limitation of existing MLN learning is that
the learned MLNs for the source domain Ds cannot be
effectively applied to a target domain Dt, unseen docu-
ments from another information source, with satisfactory
performance. The objective of MLN adaptation is to re-
duce the human work for learning an MLN for a new
target domain. MLN adaptation can be defined as fol-
lows: Given an MLNs = 〈Fs,Ws〉 trained from a source
domain Ds, and a set of unlabeled data in another tar-
get domain Dt, where unlabeled data refers to the data
in which the truth values of the groundings of the query
predicates are unknown, MLN adaptation aims at learn-
ing an MLN, denoted as MLNt = 〈Ft,Wt〉, tailored to
the target domain Dt.

4 Our Proposed Framework

The direct application of an existing source domain model
to another target domain would lead to performance
degradation even for solving the same task. The inad-
equate formulae and weights have to be modified to fit
to the target domain. Therefore, we develop a frame-
work to perform weight adaptation and formulae adap-

———————–

# Our Adaptation Framework
INPUT: MLNs = 〈Fs, Ws〉: An MLN for source domain Ds;

Λt: A set of unlabeled data in target domain Dt

OUTPUT: MLNt: An MLN for Dt

ALGORITHM:
1: Wt ← Perform weight adaptation on 〈Fs, Ws〉
2: 〈Ft, W

′
t 〉 ← Perform Formula Refinement on 〈Fs, Wt〉

3: W ′′
t ← Perform weight adaptation on 〈Ft, W

′
t 〉

4: MLNt = 〈Ft, W
′′
t 〉

———————–
Figure 1: An outline of our adaptation framework.

tation to improve the performance of the target domain
model. One characteristic of our proposed framework
is that it starts with an existing source domain model
MLNs. This existing model MLNs could be designed
by domain experts, or it could be automatically learned
using a standard structure learning method and weight
learning method if the source domain labeled data is
available. Another characteristic of our framework is that
we considered only unlabeled target domain data to re-
vise the source domain model for the target domain. We
aim at analyzing the differences and the similarities be-
tween the two domains using evidential predicates from
the target domain.

The rationale of our proposed framework is that though
the source domain and the target domain are different,
they are related in certain aspects and share certain simi-
larities. Therefore, we develop a new algorithm for weight
adaptation. First, similar to standard MLN learning, we
attempt to obtain a set of weights which maximize the
likelihood of the target domain data. Second, since both
domains solve the same task, the source domain MLNs

and the target domain MLNt should share certain sim-
ilarities. Hence, by jointly maximizing the likelihood of
the target domain data and modeling the extent of dif-
ference between the two domains, we can learn a new set
of weights, Wt, suitable for the target domain.

The second major component in our framework is to
tackle the problem of inadequate formulae. Some rela-
tions described by the source domain formulae may no
longer be beneficial to the target domain even with the
adapted weights as they may lead to ambiguous decisions.
We aim at refining those ambiguous formulae to discover
additional relational constraints for the target domain.
The challenge of refining the formulae lies in that with
only unlabeled data of the target domain where the truth
values of the query predicates are unknown, it is not triv-
ial to establish the relations between the evidential pred-
icates and the query predicates. Therefore, we develop
a new algorithm to identify those ambiguous formulae
by analyzing the adapted weights, Wt. The rationale of
our formulae refinement algorithm follows common hu-
man decision making. If the current information is am-
biguous, we need to find further references to support our
decision making. Similarly, we are seeking closely related
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relations to refine the ambiguous formulae.

The overview of our framework is depicted in Figure 1.
First, the weights of the source domain MLNs is revised
by our weight adaptation component. Second, by analyz-
ing the adapted weights Wt, we refine the set of source
domain formulae Fs. Finally, the refined set of formulae
Ft together with updated weights W ′

t is adapted again to
obtain the final target domain MLNt.

4.1 Weight Adaptation

Let MLNs be the MLN for Ds with the set of
weights Ws. Given a set of M training data Λs =
{(x(1), y(1)), . . . , (x(M), y(M))} in the source domain Ds,
where x(i) and y(i) refer to the truth value of the ground
evidential predicates and the truth value of the ground
query predicates respectively, the pseudo-log-likelihood
function of the training examples can be expressed as:

�LWs
(Λs) =

M∑

k=1

∑

l

PWs
(Yl = y

(k)
l |MBx(k)(Yl)) (4.3)

where Yl and y
(k)
l refer to the l-th atom of any query

predicate and the truth value of the l-th ground query
predicate in the k-th training example respectively.
MBx(k)(Yl) refers to the state of the Yl’s Markov blanket
in the k-th training example. The objective of learning
of MLNs is to find the set of Ws such that the pseudo-
log-likelihood function is maximized. Since in the target
domain Dt, the truth value of the ground query predicate
is unknown, the set of N training data in Dt can be rep-
resented by Λt = {(x(1)), . . . , (x(N))}. The objective of
MLN learning in the target domain Dt is to find a set of
weights, namely, Wt, which is different from Ws in prin-
ciple, such that the learned MLN, denoted as MLNt can
accurately predict the truth value of the ground query
predicates in Dt. MLN learning in the target domain
becomes nontrivial and Equation 4.3 is not adequate.

Our weight adaptation approach is designed based on two
objectives. The first objective is that we aim at learning
the set Wt such that MLNt should be tailored to Λt. On
the other hand, we observe that the source domain Ds

and the target domain Dt should share certain similarity.
Our second objective is to ensure that MLNt will not
deviate too far away from MLNs. Hence, we aim at
maximizing the following objective function in our MLN
adaptation approach:

�L′
Wt

(Λt, Ws)

=
NP

k=1

P
l

P
Xh∈MB(Yl)

log { P
y′=0,1

PWt (Xh = x
(k)
h |MB

x(k) (Xh), Yl = y′)

PWt (Yl = y′|MB
x(k) (Yl))} − δQ(Λt, Ws, Wt)

(4.4)
where Xh ∈ MB(Yl) and x

(k)
h refer to the h-th atom

in MB(Yl) and the truth value of the h-th ground
predicate in the k-th unlabeled data in Λt respectively,
Q(Λt,Ws,Wt) is a penalty function with respect to Λt,
Ws, and Wt, and δ is the penalty parameter.

Recall that our first objective is to find a set of Wt

such that MLNt is tailored to Λt. As the truth value
of the ground query predicates is unknown, this is insuf-
ficient for learning MLNt using the pseudo-log-likelihood
expressed in Equation 4.3. Instead, for each ground
query predicate Yl in Λt, we aim at maximizing the like-
lihood of the ground evidential predicates Xh connected
to YL. The first term of Equation 4.4 refers to the ex-
pected pseudo-log-likelihood function on the ground ev-
idential predicates in Λt, with respect to the PWt(Yl =
y′|MBx(k)(Yl)). Our second objective is to prevent MLNt

from deviating too far away from MLNs. To achieve this,
we introduce a penalty function Q(Λt,Ws,Wt) that is
defined as follows:

Q(Λt,Ws,Wt) =
N∑

k=1

∑

l

χ(yl|Ws , yl|Wt) (4.5)

where yl|Ws and yl|Wt are the predicted truth values
for the ground query predicate Yl in Λt using Ws and
Wt respectively, and χ(x, y) is an indicator function
which is equal to 1 if x = y and 0 otherwise. It is
obvious that Q(Λt,Ws,Wt) increases as the number of
disagreements for predicting the truth value of the ground
predicates using MLNs and MLNt increases. As a result,
by adjusting the penalty parameter δ, we can reduce the
disagreement on prediction using MLNs and MLNt, and
hence prevent MLNt from deviating too far away from
MLNs in learning.

4.2 Logic Formula Refinement

We develop an algorithm of logic formula refinement to
modify the formulae in the source domain MLNs. It aims
to refine the formulae which are not informative to the
target domain by discovering additional relations or con-
straints. Moreover, formulae usually contains constants
in the predicate arguments. As an example, formulae
are constructed for each token, i.e. constants, for solving
tasks of natural language processing. Our algorithm is
able to refine such formulae. It is achieved by first ana-
lyzing the structure of the source domain formulae and
the corresponding adapted weights to identify the ambi-
guity of the relations described. Formulae sharing sim-
ilar premises with minor weight difference between the
formulae are more likely to be ambiguous to the target
domain. Then, we discover additional information for the
specification of those formulae in the target domain. We
seek for closely related facts, i.e. the truth values of the
ground evidential predicates, in the target domain un-
labeled data as clues for supporting the formulae. The
formulae describing those closely related facts are used as
reference to initialize the weights of the refined formulae.

Figure 2 depicts the logic formula refinement algorithm.
As shown in Steps 1 to 2, for each subset Fi of formulae
sharing similar structure, we evaluate its informativeness
by calculating the difference of the adapted weights across
the formulae within a subset of formulae Fk sharing
similar premises using Equation 4.6.
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———————–
# Our Formula Refinement Algorithm
INPUT: MLNs = 〈Fs, Ws〉: An MLN for source domain Ds;

Λt: A set of unlabeled data in target domain Dt; θ: A threshold
β: the maximum length of a path

OUTPUT: MLNt: An MLN for Dt

Notation: Fi: the subset of formulae {fi1, ..., fim}
having the same premise.

ALGORITHM:
1: for each Fi ⊂ Fs

2: if S(F) > θ
3 for each fij ∈ Fi

4: for each predicate em in the premise of fij and is not invariant
5: for each gl, the ground predicate of em

6: for each true ground predicate gr connected
to gl in Λt

7: P ← construct paths with gl & gr and have length < β
8: P′ : {pmn1, ..., pmnr} ← variablize the paths P
9: en ← variablize gr

10: Select the clause pmnk ∈ P′ with highest ρ(em, en, pmn)
& highest length of pn

11: Jl ← find the formulae matching
gr and with same query predicate of fij

12: Pl ← Pk ∪ p′
n

13: for each Pl

14: fa ← createFormula(Pl, fij)
15: wa ← average value of the weights of Jl

16: Fa ← Fa ∪ Fa; Wa ← Wa ∪ wa

17:F ′
t ← Fs ∪ Fa; W ′

t ← Ws ∪ Wa

———————–

Figure 2: Formula Refinement Algorithm

S(Fk) = 1/n

nX

i=1

{
kX

j=i+1

|wki − wkj |}/|wki| (4.6)

where n is the number of formulae in Fk and wi is the
weight of the formula fi ∈ Fk.

Definition 1 A predicate is invariant if it has the same
truth value for both the source and the target domains.

Definition 2 A ground predicate gk(a1, a2, ..., ai, ..., am)
is connected to another ground predicate
gl(b1, b2, ..., bj , ..., bn) if ∃ai ∃bj : (ai = bj)
where gk, gl are m-ary and n-ary predicate respectively,
and a1, ..., am, b1, ..., bn are the constants for the argu-
ments.

Definition 3 A path p of length l is a series of l distinct
ground predicates
p = (g1, g2, ..., gk, ..., gl),∀gi ∈ D where D represents the
knowledge base, such that for 1 < k ≤ l:
1. the kth ground predicate gk is connected to the (k −

1)th ground predicate gk−1, and
2. for 1 < i ≤ k − 1, gk 	= gi.

In Steps 3 and 4, for each equation fij ∈ Fi, we focus
on the evidential predicates which are not invariant as
defined in Definition 1. For the citation segmentation
task, an example of invariant predicate is IsDate(t) which
represent whether a token t is a term for describing
date. The atom IsDate(“December”) is always true
for both the source and the target domains. Pairs of
connected ground predicates are identified. Paths, which
contains the pair of connected ground predicates and have
length shorter than or equal to the maximum length
value specified, are discovered. A path is a series of
connected ground predicates as given in Definitions 2
and 3. For example, the path, E(a, b)∧F (a, c), where the
two ground predicates, E(a, b) and F (a, c), are connected

with the constant, a, is of length 2. These candidate
paths are then variablized where some constants are
replaced with variables to form candidate clause P ′ in
Step 8. Using the above example, considering the path
E(a, b) ∧ F (a, c), since the constants b and c are not
the focus of interest, they are replaced by variables ν1

and ν2 to form the clause E(a, ν1) ∧ F (a, ν2). Next, the
relatedness measure ρ(em, en, pmnk) is calculated for each
candidate clause pmnk by Equation 4.7. If the closely
related ground predicate is contained in the grounding of
the source domain formulae, it is added to the matching
formulae subset Jr in Step 11. The longest candidate
clause with maximum ρ(em, en, pmnk) is used to construct
new formulae. Finally, in Steps 13 to 15, new formulae
are constructed by the formula fij , set of clauses p′n ∈
P ′, where the corresponding weight is initialized by
the average weights of the matching formulae. These
formulae are added to the rest of the formulae to obtain
the target domain MLNt.

The relatedness measure for a candidate clause pmn is
defined as:

ρ(em, en, pmn) =
Np(pmn)[R(pmn) − R(em)R(en)]

p
[R(em) − R(em)2][R(em) − R(em)2]

(4.7)

where R(pmn), R(em), and R(en) denote the ratio of the
number of true groundings over the number of groundings
for the clause pmn, predicates em and en, in the target
domain unlabeled data λt respectively. pmn represents
the candidate clause containing the predicates em and
en. Np(x,D) and Nt(x,D) denote the number of true
groundings for formula or clause x. and the number of
grounding for formula or clause x given the dataset D
respectively. R(x) is defined as:

R(x) = Np(x, λt) / Nt(x, λt) (4.8)

5 Experiments

Our framework is implemented based on the Alchemy sys-
tem [5], which provides algorithms in statistical relational
learning for the MLN. As a baseline for evaluation, the
source domain MLN is learned using the standard weight
learning approach in the Alchemy system. The source do-
main MLN is then directly applied on the target domain
for testing without adaptation.

We have conducted experiments on the task of segmenta-
tion of citation records. The goal of segmentation of cita-
tion records is to extract the candidate fields, namely, ti-
tle, author, and venue, from the citation strings. We em-
ployed the segmentation MLN model developed by Singla
and Domingos [11] for our experiments. The correspond-
ing query is InField(i, f, c), which is true if and only if
the i-th position of the citation c is part of the field f ,
where f ∈ {Title, Author, V enue}. The main evidential
predicate is HasToken(t, i, c), which is true if and only if
citation c has a token t in the i-th position where t is a the
token in the source domain labeled data. Moreover, there
are predicates describing the strings, the information on
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Table 1: Experimental Results in F1 measure for Segmentation of Citation Records
Target Domains

constraint satisfaction automated reasoning reinforcement learning
Method Total Author Title Venue Total Author Title Venue Total Author Title Venue

Baseline Model 76.4% 73.9% 69.0% 81.4% 76.2% 74.7% 67.1% 81.0% 77.3% 75.8% 72.2% 80.7%
Our Proposed Model 78.8% 78.4% 71.0% 83.5% 79.0% 81.2% 68.8% 83.1% 78.9% 81.8% 71.9% 81.8%

punctuation, and positional information regarding the ci-
tations. For example, the following formula, describing
whether a word tj is part of the field fn, is created for
every word in the source domain data.

HasToken(tj , i, c) ⇒ InField(i, fn, c)

Experimental Setup
We conducted experiments on CiteSeer [6], one of the
standard datasets used for information extraction on ci-
tations. The CiteSeer dataset has approximately 1,500
citations, and it contains four different topic sections,
namely, constraint satisfaction, face recognition, auto-
mated reasoning, and reinforcement learning. In the ex-
periments, the face recognition section of the CiteSeer
dataset is used as the source domain. Each of the three
other sections is used as target domain separately. The
penalty parameter δ was set to a value of 1 for weight
adaptation. The threshold for formula refinement is set
to 0.5. The F-measure metric is used for evaluating the
citation segmentation performance. Specifically, the F1

measure is the equally weighted harmonic mean of Pre-
cision and Recall.
Experimental Results
Table 1 shows our adaptation performance for the seg-
mentation task. The performance of our proposed model
demonstrates consistent improvement obtained by our
framework for different target domains. Our model can
successfully captures the difference between the source
and the target domain. Weights representing the relative
importance of the formulae are revised and the ambigu-
ous formulae are modified for the target domains. An
example of a refined formula is:
HasToken(knowledge, i, c) ∧ HasToken(between, j, c) ∧

Next(j, i) ⇒ InField(i, f, c)

where Next(j, i) represents that the token at position
j is next to the token at position i. Since, the token
“knowledge” appears frequently in both the field of “ti-
tle” and “venue”, our algorithm has refined the formula
by a closely related token “between”. The token “be-
tween” appears mostly in the field of “title”. Hence,
its appearance together with the token “knowledge” is
a good reference for deciding the field.

6 Conclusions

In this paper, we have presented a framework that can
adapt an existing MLN to a target domain solving the
same task using unlabeled data from the target domain.
Our proposed weight adaptation method revises the sig-
nificance of the existing logic formulae for the target do-
main using the unlabeled target domain data only. Our

formula refinement algorithm discovers useful relational
patterns and refines existing ambiguous formulae. The
new formulae constructed are useful in modeling the un-
derlying relations in the target domain. The consistent
improvements in the experimental results of our frame-
work demonstrate that both the logic formulae refined
and the adapted weights can better characterize the tar-
get domain.
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