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Abstract—Drug therapy response of HIV-1 infected
immune system is an important area of research by
now. Today, a greater knowledge of drug induced
CTL response allows us to better understand of cell
mediated immune mechanism and humoral immune
mechanism for viral infections. Moreover excessive
stimulation of CTL in the immune system by different
drugs leads to protective effects during natural infec-
tion with Human immunodeficiency virus of type-1.
This paper concerns an application of drug therapy
response to a mathematical model related to HIV-1
infection dynamics including a time delay in the re-
moval of infected CD4+T cells or analogously in the
process of viral replication. The model is analysed
analytically as well as numerically. Our results show
that delay affects considerably the attainability of the
reduction of viral load in the HIV-1 infected system.
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1 Introduction

Extensive research on the area of HIV-1 infection invad-
ing the human immune system started in early nineties of
the last century [1]-[3]. Though considerable knowledge
have been gathered till date regarding the implications
of genetic variation of immune cells, HIV-1 pathogenesis
and probable therapies treating the infected individuals,
many of the issues still remain unsolved. Recent effort
in this direction relates to the retroviral therapies used
to treat HIV-1 patients making them to survive for a
longer period against the odds of probable opportunistic
diseases. Actually retroviral therapy when given to an
individual patient make a portion of the immune cells to
be toxic thereby introducing toxicity in the immune sys-
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tem of the individual. It is thus important to maintain
an optimum controlled level of drug injection for an indi-
vidual patient. This very issue of optimal drug therapy
together with the dynamical evolution of CD4+T lym-
phocytic immune cells needs proper understanding. In
this communications we make an attempt to understand
bearings of drug response on the dynamical behaviour
of the lymphocytic immune cells populations specifically
CD4+T cells together with that of viral load.

It has been observed clinically that patients infected with
immunodeficiency virus type-1 (HIV-1), if treated with a
combination of inhibitor-drugs lamivudine and zidovu-
dine shows a 10 to 100 fold reduction of viral load and
nearly 25% increase in the healthy CD4+T cells count.
Sustenance of such drug receiving patients is observed to
be more than one year [4], [5]. The longer sustenance is
admitted to be consequences of the diminishing rate of
infections of the uninfected T-cells. Obviously leads to
the conjecture that the drug effectively drives the virus
to state of near extinction.

In this paper we consider a mathematical model
of HIV-1 infection to CD4+T cells including the
mentioned inhibitor drug. The system response
to the drug-stimulation by generating Cytotoxic T-
Lymphocyte(CTL) and this CTL’s in-turn attack the ac-
tively infected CD4+T cells and kill them. Note that
there exists a finite time lag between a CD4+T cells get-
ting actively infected and its subsequent death. Such re-
alistic time lag has been incorporated in the model under
consideration. We analyze the dynamics of such a model
to understand how the HIV-1-infected immune system
responds to varied levels of drugs applied under the sys-
tematic therapy procedure.

Formulation of the mathematical model

Let x(t) and y(t) be the uninfected and infected (virus
producing cells) portions of the hosts CD4+T immune
cells at a time t. Our focus here is to construct first a
simple model for viral dynamics. For this purpose the
following assumptions are made.
(A1): Infectible CD4+T cells are produced at a constant
rate λ and are removed on the system through the nat-
ural death rate d. A variable denoting free virus load
in the system becomes relevant while considering short
term viral dynamics. However when one is interested in
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drug induced changes at the steady state the variable cor-
responding to free virus can be omitted. At the steady
state it is inherently assumed that the free virus popula-
tions is proportional to the virus-producing CD4+T cells
which are already infected. Note that infected CD4+T
cells produce free virus by their replication through the
process of cell lysis.
(A2): The process of infection to the infectible CD4+T
cells follows the law of mass action under mixing homo-
geneity. This means that the number of new infection at
the steady state is proportional to x(t)y(t).
(A3): A per capita death rate of infected CD4+T cells is
considered and is denoted by a parameter a.
Based on the above assumption we can write down a sim-
ple model for virus dynamics as

dx
dt = λ− dx− βxy
dy
dt = βxy − ay

(1.1)

where β is the rate of contact between uninfected CD4+T
cells with the virus producing T- cells. Although it can
be seen in the literature that the rate at which unin-
fected CD4+T cells are converted into virus producing
(infected) portion is smaller than β, we consider here the
rate to be same as β. The argument in support of such
enforcement goes as-at steady state the condition of mix-
ing homogeneity is well set and the law of mass action
holds perfectly. Whenever a HIV-1 infected patient is
subjected to RTI (Reverse Transcriptase Inhibitors) drug,
the virus replications within the virus producing T-cells
faces a reduction. Such effect may be incorporated in the
two variable simple virus dynamics model by reducing
the numerical value of the parameter β (rate of infec-
tion). However, mere reduction of β in the basic viral
dynamics model fails to explain the strong suppression
of equilibrium virus load observed during long term drug
therapy. Therefore it is imperative to include another
variable in the basic viral dynamics model (1.1), in order
to make the long term immune response of the model at
per with those observed in reality. We include a variable z
to represent the density of the Cytotoxic-T-Lymphocyte
(CTL) responses against virus infected cells. The basic
virus dynamics model with this inclusion becomes

dx
dt = λ− dx− βxy
dy
dt = βxy − ay − pyz
dz
dt = ky − bz

(1.2)

Here p is the killing rate of the virus producing cells by
CTL, k is the rate of stimulation (production) of CTL
and b denotes the base line mortality rate of CTL. The
basic viral dynamics model including CTL response as-
sumes an instantaneous death of infected CD4+T cells.
But in reality the infected T-cells are observed to have a
latency period. During this latency period replication or
reproduction of virus takes place within the infected cells.
Thus, we consider a delay in the death term of infected
(virus producing) T-cells. The average effect of such de-

Figure 1: Time series solutions of model variables for
different values of delay factor τ . p = 0.001 changes in
the time series solutions with the increase of τ . Various
model parameters are as in Table 1.

lay can be incorporate through a memory function or de-
lay kernel, which under suitable conditions, yields model
equations including a delay factor τ (≥ 0) as

dx
dt = λ− dx− βxy
dy
dt = βxy − ay(t− τ)− pyz
dz
dt = ky − bz

(1.3)

under the initial condition: x(θ) ≥ 0, y(θ) ≥ 0, z(θ) ≥ 0,
θ ∈ (−∞, 0]

2 Local stability analysis

Right hand side of the equation (1.3) is a smooth func-
tion of x, y, z (variables) and the parameter, as long
as the quantities are non-negative, so local existence
and uniqueness properties holds in the positive octant.
The modal equation (1.3) has the following equilibria
on all the co-ordinate planes, E0(0, 0, 0), E1(λ

d , 0, 0), and
E∗(x∗, y∗, z∗)

where x∗ = (abβ−dkp)+
√

(abβ−dkp)2+4β2bpkλ

2bβ2

y∗ = λ−dx∗
βx∗ , z∗ = k(λ−dx∗)

βbx∗

E∗ exists provided k < abβ
pd , x∗ < λ

d .
Here we are interested to investigate the local stability
of the interior equilibrium E∗ of the delay-induced sys-
tem (1.3). Let m(t) = x(t)−x∗, n(t) = y(t)− y∗, q(t) =
z(t)−z∗ are the perturbed variables. The linearized form
of the system (1.3) at E∗(x∗, y∗, z∗) is given by

dm
dt = −dm− βmy∗ − βnx∗
dn
dt = βmy∗ + βnx∗ − an(t− τ)− pnz∗ − pqy∗
dq
dt = kn− bq

(2.1)

The characteristic equation of system (2.1) is given by

ρ3+(A+ae−ρτ )ρ2+(B+Ce−ρτ )ρ+D+Ee−ρτ = 0 (2.2)

where, A = b + d + βy∗ + pz∗ − βx∗, B = bd +
dpz∗+βby∗+βpy∗z∗+ bpz∗+pky∗−βdx∗−βbx∗, C =
a(d+b+βy∗), D = dbpz∗+dpky∗+βbpy∗z∗+βpky∗2−
βdbx∗, E = abd + βaby∗.
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Now to determine the nature of the stability, we require
the sign of the real parts of the roots of the system (2.2).

Let Φ(ρ, τ) = ρ3 + (A + ae−ρτ )ρ2 + (B + Ce−ρτ )ρ
+ D + Ee−ρτ = 0

(2.3)
For τ = 0, i.e. for non-delayed system
Φ(ρ, 0) = ρ3 + (A + a)ρ2 + (B + C)ρ + D + E = 0 From
Routh-Hurwitz condition, the necessary and sufficient
condition for locally asymptotic stability of the steady
state is, (A + a)(B + C) − (D + E) > 0 and the
non-delayed system is locally asymptotically stable
around the positive interior equilibrium if
y∗ > x∗, and θ > max(θ1, θ2, θ3, θ4)

θ1 = βx∗

z∗ , θ2 = β2x∗y∗

dz∗ , θ3 = βd2x∗

abz∗ , θ4 = β2bx∗y∗

adz∗

(2.4)

Substituting ρ = u(τ)+ iv(τ) in (2.2) and separating real
and imaginary parts we obtain the following transcenden-
tal equations:

u3 − 3uv2 + A(u2 − v2) + a(u2 − v2)e−uτ cos vτ
+2auve−uτ sin vτ + Bu + Cue−uτ cos vτ
+Cve−uτ sin vτ + D + Ee−uτ cos vτ = 0

(2.5)
3u2v − v3 + 2Auv + 2auve−uτ cos vτ−
a(u2 − v2)e−uτ sin vτ + Bv + Cve−uτ cos vτ
−Cue−uτ sin vτ − Ee−uτ sin vτ = 0

(2.6)

3 Sufficient Conditions for Nonexistence
of Delay Induced Instability

To find the conditions for nonexistence of delay induced
instability, we now use the following theorem of Gopal-
samy [6].
Theorem 3.1: A set of necessary and sufficient condi-
tions for the equilibrium E∗ to be asymptotically stable
for all τ ≥ 0 is the following: (i) The real parts of all
the roots of φ(ρ, 0) = 0 are negative. (ii) For real v and
τ ≥ 0, φ(iv, τ) 6= 0, where i =

√−1.
Proof: Here φ(ρ, 0) = 0 has roots whose real parts are
negative provided (2.4) holds. Now for v = 0

φ(0, τ) = dbpz∗ + dpky∗ + βbpy∗z∗ + βpk(y∗)2 − βdbx∗

− ab(d + βy∗) 6= 0
(3.1)

and for v 6= 0

φ(iv, τ) = −iv3 −Av2 − av2e−ivτ + iBv + iCve−ivτ

+ D + Ee−ivτ = 0
(3.2)

Separating real and imaginary parts we get

Av2 −D = Cv sin vτ + (E − av2) cos vτ (3.3)

−v3 + Bv = (E − av2) sin vτ − Cv cos vτ (3.4)

Squaring and adding the above two equation, we get

(Av2 −D)2 + (−v3 + Bv)2 = a2v4

+ (C2 − 2aE)v2 + E2 (3.5)

Let the right hand side of (3.5) be denoted by f(v).
Now for arbitrary real v , we get from (3.5)

f(v) ≤ a2v4 + (C2 − 2aE)v2 + E2 (3.6)

Therefore a sufficient condition for the non existence of a
real number v satisfying φ(iv, τ) = 0 can now be obtained
from (3.5) and (3.6) as
v6 + (A2 − 2B − a2)v4 + (B2 − 2AD − C2 + 2aE)v2

+ D2 − E2 ≥ 0
The inequality we can write in the form of

v6 + Pv4 + Qv2 + R > 0 (3.7)

P = A2 − 2B − a2, Q = B2 + 2aE − 2AD − C2,
R = D2 −E2.

The sufficient condition can be obtained as if

p > 2βx∗

z∗ , a−1 > b−1 + d−1, and pk > bdx∗
y∗2 (3.8)

Therefore condition (i) and (ii) of the above theorems are
satisfied if (3.5) holds.

4 Estimation of the length of Delay to
Preserve Stability

In this section we assume that in absence of delay, E∗ is
locally asymptotically stable. This is guaranteed if (2.4)
holds. By continuity and for sufficiently small τ > 0,
all eigenvalues of (2.3) have negative real parts provided
one can guarantee that no eigenvalue with positive real
part bifurcates from infinity (which could happen since
it is a retarded system). For stability analysis we use the
Nyquist criterion [7]. To do this, we consider the system
(2.1) and the space of real valued continuous functions
defined on [τ,∞) satisfying the initial conditions.
Let m̄(L), n̄(L), and q̄(L) be the Laplace transform of
m(t), n(t), and q(t) respectively. Taking the Laplace
transformation of system (2.1), we have

(L−A1)m̄(L) = A2n̄(L) + m(0)
(L−B2 −B3e

−Lτ )n̄(L) = B1m̄(L) + B4q̄(L)+
B3e

−LτK1(L) + n(0)
(L− C2)q̄(L) = C1n̄(L) + q(0)

(4.1)

where

K1(L) =
∫ 0

−τ

e−Lδn(δ)dδ

K2(L) =
∫ 0

−τ

e−LδV (δ)dδ; t− τ = δ

A1 = −δ1 = −(d + βy∗) A2 = −δ2 = −βx∗

B1 = δ3 = βy∗ B2 = δ4 = βx∗ − pz∗

B3 = −δ5 = −a B4 = −δ6 = −py∗

C1 = k C2 = −δ7 = −b

(4.2)
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Rearranging we get

[L3 + (δ1 + δ7 − δ4 + δ5e
−Lτ )L2 + (δ2δ3 − δ1δ4 + δ1δ7

−δ4δ7 + kδ6 + δ1δ5e
−Lτ + δ5δ7e

−Lτ )L
+(δ2δ3δ7 − δ1δ4δ7 + kδ1δ6 + δ1δ5δ7e

−Lτ )]q̄(L)
= kδ3m(0) + K(L + δ1)[n(0)− δ5e

−LτK1(L)]
+ [(L + δ1)(L− δ4 + δ5e

−Lτ ) + δ2δ3]q(0)
(4.3)

The inverse Laplace transform of q̄(L) will have terms
which exponentially increase with time, if q̄(L) has poles
with positive real parts. Since E∗ needs to be locally
asymptotically stable, it is necessary and sufficient that
all poles of q̄(L) have negative real parts. We shall employ
the Nyquist criterion which states that if L is the arc
length of a curve encircling the right half- plane, the curve
q̄(L) will encircle the origin a number of times equal to the
difference between the number of poles and the number
of zeroes of q̄(L) in the right half-plane. Let

F (L) = L3 + [χ1 + δ5e
−Lτ ]L2 + [χ2 + δ5χ3e

−Lτ ]L
+ χ4 + δ5χ5e

−Lτ

(4.4)
χ1 = δ1 + δ7 − δ4

χ2 = δ2δ3 − δ1δ4 + δ1δ7 − δ4δ7 + kδ6

χ3 = δ1 + δ7

χ4 = δ2δ3δ7 + kδ1δ6 − δ1δ4δ7

χ5 = δ1δ7

(4.4.1)

Then conditions for local asymptotic stability of E∗[7] is

Im F (im0) > 0 (4.5.1)

Re F (im0) = 0 (4.5.2)

where m0 is the smallest positive root of equation (4.5.2)

F (im0) = −im0
3 − χ1m0

2 − δ5m0
2 cos m0τ + iχ2m0

+im0
2δ5 sin m0τ + im0δ5χ3 cosm0τ + χ4

+δ5χ5 cos m0τ + m0δ5χ3 sin m0τ − iδ5χ5 sin m0τ > 0
(4.6)

Now (4.5.1) and (4.5.2) becomes

−m0
3 + χ2m0 > δ5(χ5 −m0

2) sin m0τ
−m0δ5χ3 cos m0τ

(4.7.1)

χ1m0
2 − χ4 = m0δ5χ3 sin m0τ

+δ5(χ5 −m0
2) cos m0τ

(4.7.2)

To get an estimation on the length of delay, we shall
utilize the following conditions:

−m3 + χ2m > δ5(χ5 −m2) sin mτ −mδ5χ3 cosmτ
(4.8.1)

χ1m
2 − χ4 = mδ5χ3 sin mτ + δ5(χ5 −m2) cos mτ

(4.8.2)
Therefore, E∗ will be stable if the inequality (4.8.1) holds
at m = m0, where m0 is the first positive root of equa-
tion (4.8.2). We shall now estimate an upper bound
m+ of m0, independent of τ and then to estimate τ so
that (4.8.1) holds for all values of m, 0 ≤ m ≤ m+,

and hence in particular at m = m0. The unique pos-
itive solution of χ1m

2 − χ4 = δ(χ5 − m2), denoted by
m+, is always greater than or equal to m0. Since the
right hand side of (4.8.2) is always less than or equal to√

m2δ2
5χ2

3 + δ2
5χ2

5 + δ2
5m4, the unique positive solution of

χ1m
2 − χ4 = δ5

√
m2χ2

3 + χ2
5 + m4 denoted by m+ is al-

ways greater than or equal to m. By straight forward
calculation, one can determined that

m+ =

√
(δ5

2χ2
3+2χ1χ4)+

√
(δ5

2χ2
3+2χ1χ4)2−4(χ2

1−δ2
5)(χ2

4−δ2
5χ2

5)

2(χ2
1−δ2

5)

(4.9)
We see that m+ is independent of τ . Now we need an
estimation on τ so that (4.8.1) holds for all 0 ≤ m ≤ m+.
Now rearranging (4.8.1) we get,

m2 < χ2 + δ5χ3 cos mτ − δ5(χ5
m −m) sin mτ (4.10)

Note that at τ = 0, (4.8.2) can be written as

m2 = χ4+δ5χ5
χ1+δ5

< χ2 + δ5χ3 (4.11)

Hence (4.10) is valid for τ = 0, m = m0 By continuity it
will hold for small τ > 0 at m = m0. Now substituting
m2 from (4.8.2) into (4.10) we get,

δ5{mχ3 + (χ5
m −m)χ1} sin mτ + δ5(χ5 − χ1χ3 − χ2)

cosmτ + δ5
2χ3 sin2 mτ + δ5

2 (χ5
m −m) sin 2mτ

< χ1χ2 − χ4 + δ5
2χ3 ≡ η

(4.12)
We denote the l.h.s of (4.12) by ν(τ, m), then we have
ν(τ, m) ≤ δ5{mχ3+(χ5

m −m)χ1}mτ +δ5(χ5−χ1χ3−χ2)
+ δ5

2χ3m
2τ2 + δ5(χ5

m −m)mτ ≤ ψ(τ, m+)
Now if ψ(τ, m+) < η, then ν(τ,m0) < η. Let τ+

denote the unique positive root of ψ(τ, m+) = η i.e.
δ2
5χ3m

2τ2 + δ5(m2χ3 + χ1χ5 −m2χ1 + χ5 −m2)τ
+ δ5(χ5 − χ1χ3 − χ2)− η = 0

τ+ = −α+
√

(α2−4ξθ)

2ξ
(4.13)

where,

ξ = m2δ2
5χ3, α = m2δ5χ3 + δ5(χ5 −m2)(χ1 + 1),

θ = δ5(χ5 − χ1χ3 − χ2)− η
(4.14)

Then for τ < τ+, the Nyquist criterion holds and τ+

gives the estimate for the length of the delay τ for which
stability is preserved.

5 Criterion for Preservation of Stability,
Instability and Bifurcation Results:

Let us consider ρ and hence u and v as functions of τ .
We are interested in the change of stability of E∗ which
will occur at the values of τ for which u = 0 and v 6= 0.
Let τ̂ be such that for which u(τ̂) = 0 and v(τ̂) = v̂ 6= 0.
Then (2.5) and (2.6) become

−Av̂2 − av̂2 cos v̂τ̂ + Cv̂ sin b̂τ̂ + D + E cos v̂τ̂ = 0
(5.1)
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−v̂3 + av̂2 sin v̂τ̂ + Bv̂ + Cv̂ cos v̂τ̂ − E sin v̂τ̂ = 0
(5.2)

Now eliminating τ̂ we get

v̂6 + (A2 − 2B − a2)v̂4 + (B2 − C2 − 2AD + 2aE)v̂2

+ D2 − E2 = 0
(5.3)

To analyze the change in the behavior of the stability of
E∗ with respect to τ , we examine the sign of du

dτ as u
crosses zero. If this derivative is positive (negative) then
clearly a stabilization (destabilization) can not take place
at that value of τ̂ . We differentiate (2.5) and (2.6) w.r.t.
τ , then setting τ = τ̂ , u = 0, and v = v̂ we get

X du
dτ (τ̂) + Y dv

dτ (τ̂) = g
−Y du

dτ (τ̂) + X dv
dτ (τ̂) = h

(5.4)

X = −3v̂2 + B + C cos v̂τ̂ + 2av̂ sin v̂τ̂
− τ̂ [(E − av̂2) cos v̂τ̂ + Cv̂ sin v̂τ̂ ]

Y = −2Av̂ + C sin v̂τ̂ − 2av̂ cos v̂τ̂
+ τ̂ [Cv̂ cos v̂τ̂ − (E − av̂2) sin v̂τ̂ ]

g = [(E − av̂2) sin v̂τ̂ − Cv̂ cos v̂τ̂ ]v̂
h = [Cv̂ sin v̂τ̂ + (E − av̂2) cos v̂τ̂ ]v̂

(5.5)

Solving (5.4), we get

du
dτ (τ̂) = gX−hY

X2+Y 2 (5.6)

du
dτ (τ̂) has the same sign as gX − hY . From (5.5) after
simplification and solving (5.1) and (5.2), we get

gX − hY = v̂2[3v̂4 + 2(A2 − 2B − a2)v̂2

+ (B2 − C2 + 2aE − 2AD)] (5.7)

Let F (z) = z3 + P1z
2 + P2z + P3

P1 = A2 − 2B − a2, P2 = B2 − C2 + 2aE − 2AD,
P3 = D2 − E2

(5.8)
which is the left hand side of (5.3) with v̂2 = z.

Therefore, F (v̂2) = 0 (5.9)

Now, dF
dz (v̂2) = 3v̂4 + 2P1v̂

2 + P2 = gX−hY
v̂2

⇒ dF
dz (v̂2) = X2+Y 2

v̂2 .du
dτ (τ̂)

⇒ du
dτ (τ̂) = v̂2

X2+Y 2 .dF
dz (v̂2)

(5.10)

Hence the criterion of instability (stability) of E∗ are—
(1) If the polynomial F (z) has no positive root (being
contradiction to the existence of v̂ > 0 be real) there can
be no change of stability. (2) If F (z) is increasing (de-
creasing) at all of its positive roots, instability (stability)
is preserved. Now in this case, if (i) P3 < 0, F (z) has
unique positive real root and then it must increase at
that point [since F (z) is a cubic in z, Ltz→∞F (z) = ∞].
(ii) P3 > 0, then (1) is satisfied, i.e. there can be no
change of stability. (iii)If P2 < 0, P3 > 0 then minimum
of F (z) will exist at

zm = −P1+
√

P 2
1−3P2

3
(5.11)

and if F (Zm) > 0 (5.12)

i.e, 2P1
3 − 9P1P2 + 27P3 > 2(P1

2 − 3P2)
3
2 (5.12.1)

since 27P3 − 3P1P2 > 27P3

Hence 2P1(P 2
1 − 3P2) + 27P3 − 3P1P2 > 27P3 + 2P1

3

(5.13)
Thus for (5.12) to hold it is sufficient that

27P3 + 2P1
3 > 2(P1

2 − 3P2)
3
2

P2 >
P1

2−(
27P3+2P1

3

2 )
2
3

3
(5.14)

Therefore, we get the following theorem:
Theorem 5.1: If P3 < 0 and if E∗ is unstable for τ = 0,
it will remain unstable for τ > 0.
Theorem 5.2: If P3 < 0 and if E∗ is asymptotically
stable for τ = 0, it is impossible that it remains stable
for τ > 0. Hence there exists a τ̂ > 0, such that for
τ < τ̂ , E∗ is asymptotically stable and for τ > τ̂ , E∗ is
unstable and as τ increases together with τ̂ , E∗ bifurcates
into small amplitude periodic solutions of Hopf type [8].
The existence of unique τ̂ is given by

τ̂ = 1
v̂ arctan[ (av̂2−E)(v̂3−Bv̂)+Cv̂(Av̂2−D)

Cv̂(v̂3−Bv̂)−(av̂2−E)(Av̂2−D) ] + nπ
v̂ ,

n = 0, 1, 2, ...
(5.15)

Our required τ̂ is given by n = 0 in (5.15) and hence the
Hopf bifurcation criteria is satisfied.

6 Numerical simulation

Table 1. Values of parameters used for models dynamics
calculations.

Para- Definition Default
meter Value

λ Constant rate of
production of CD4+T 10.0 mm−3day−1 [9],[10]

d Death rate
of Uninfected 0.01 day−1 [9]
CD4+T cells

β Rate of contact
between x and y 0.002 mm−3day−1 [4]

a Death rate of virus
producing cells 0.24 day−1 [10]

p Killing rate of Virus
producing cells 0.001 mm−3day−1 [4]

k Rate of simulation
of CTL 0.2 day−1 [4]

b Death rate of CTL 0.02 day−1 [4]

Numerical solutions of the model equation (1.3), we con-
sidered for the default value of model parameters as in
Table 1. Initial values of model variables are set to
x(0) = 50, y(0) = 50, and z(0) = 2. The variation of p
is also restricted by the condition that pk

b ∼ 0.01− 0.05.
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Figure 2: The phase diagram for model variables as a
function of the parameter k with τ = 5.0 and p = 0.001.
Various model parameters are as in Table 1.

From Figure 1 we find that small values of delay fac-
tor enhances and elongate the initial oscillations in the
time series solutions of model variables. But there exist
a threshold delay beyond which oscillations in variables
smeared away and with increasing τ such smearing be-
comes progressively fast. In Figure 2, we present the
phase diagram of model variables as a function of the
parameter p with τ = 5.0 and k = 0.2. Here we find a
threshold value of p beyond which asymptotic stable so-
lutions for y and z die-down and the same for x rises to
its global stable value.

7 Discussion and conclusion

We have considered a basic mathematical model to rep-
resent the virus dynamics of a HIV-1 infected individual
including its response to RTI therapies. The RTI drugs
actually impair the HIV-1 infected cells by inhibiting re-
verse transcription of viral RNA into DNA, thereby re-
ducing the rate of infection of uninfected T-cells. Our
focus is to explore the effect of delay on the sustainable
reduction of virus load in the system.
In our analytical studies on the HIV-1 dynamics we focus
on the qualitative aspects of the HIV-1 dynamics within
the model. Our calculations reveal that the existence and
uniqueness of the solutions of dynamical variables x, y,
and z locally holds in the positive octant. Through the
local stability analysis we obtain sufficient conditions for
the nonexistence of delay induced instability. The con-
ditions obtained point towards the existence of asymp-
totic stability of interior equilibrium. We have estimated
the length of delay for which the stability of the sys-
tem remains preserved. We find that delay assuming val-
ues within the estimated length, Nyquist criteria holds.
When the delay is set to the value beyond the estimated
length, stable equilibrium solutions are seen bifurcate into
small amplitude periodic solutions of Hopf type.
Numerical calculations reveal that delay affects consider-
ably the attainability of the reduction of viral load in the
HIV-1 infected system. Note that in the present model
the reduction of the infected proportion of T-cells actu-
ally means the reduction of viral load.
From discussion of the analytical and numerical solutions
of the model it is clear that delay in the death rate of
virus producing T-cells enhances oscillations in the model

variables, but asymptotically solutions are always stable.
Further for definite set of choice of parameters p, k, and τ
the system moves to globally stable regime where sustain-
ability of the reduction of the virus load is undoubtedly
assured. Thus we can predict that if the application of
RTI drugs are improvised at a optimum level in such a
manner so as to match the parameters, killing rate of
infected T-cells by CTL (p) at 0.001 mm3 /virus stim-
ulation rate of CTL (k at 0.2) and delay in the death
rate of infected T-cells (τ) at around 11 days then the
possibility of eradication of HIV-1 in an individual and
thereby restoration of healthy immune system would also
be possible.
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